456 research outputs found

    Seven common errors in finding exact solutions of nonlinear differential equations

    Full text link
    We analyze the common errors of the recent papers in which the solitary wave solutions of nonlinear differential equations are presented. Seven common errors are formulated and classified. These errors are illustrated by using multiple examples of the common errors from the recent publications. We show that many popular methods in finding of the exact solutions are equivalent each other. We demonstrate that some authors look for the solitary wave solutions of nonlinear ordinary differential equations and do not take into account the well - known general solutions of these equations. We illustrate several cases when authors present some functions for describing solutions but do not use arbitrary constants. As this fact takes place the redundant solutions of differential equations are found. A few examples of incorrect solutions by some authors are presented. Several other errors in finding the exact solutions of nonlinear differential equations are also discussed.Comment: 42 page

    Meromorphic solutions of nonlinear ordinary differential equations

    Full text link
    Exact solutions of some popular nonlinear ordinary differential equations are analyzed taking their Laurent series into account. Using the Laurent series for solutions of nonlinear ordinary differential equations we discuss the nature of many methods for finding exact solutions. We show that most of these methods are conceptually identical to one another and they allow us to have only the same solutions of nonlinear ordinary differential equations

    Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs

    Get PDF
    Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of nonlinear ordinary and partial differential equations (ODEs and PDEs). New algorithms are given to find exact polynomial solutions of ODEs and PDEs in terms of Jacobi's elliptic functions. For systems with parameters, the algorithms determine the conditions on the parameters so that the differential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi's sn or cn functions. Examples illustrate key steps of the algorithms. The new algorithms are implemented in Mathematica. The package DDESpecialSolutions.m can be used to automatically compute new special solutions of nonlinear PDEs. Use of the package, implementation issues, scope, limitations, and future extensions of the software are addressed. A survey is given of related algorithms and symbolic software to compute exact solutions of nonlinear differential equations.Comment: 39 pages. Software available from Willy Hereman's home page at http://www.mines.edu/fs_home/whereman

    Spatial chaos in weakly dispersive and viscous media: a nonperturbative theory of the driven KdV-Burgers equation

    Full text link
    The asymptotic travelling wave solution of the KdV-Burgers equation driven by the long scale periodic driver is constructed. The solution represents a shock-train in which the quasi-periodic sequence of dispersive shocks or soliton chains is interspersed by smoothly varying regions. It is shown that the periodic solution which has the spatial driver period undergoes period doublings as the governing parameter changes. Two types of chaotic behavior are considered. The first type is a weak chaos, where only a small chaotic deviation from the periodic solution occurs. The second type corresponds to the developed chaos where the solution ``ignores'' the driver period and represents a random sequence of uncorrelated shocks. In the case of weak chaos the shock coordinate being repeatedly mapped over the driver period moves on a chaotic attractor, while in the case of developed chaos it moves on a repellor. Both solutions depend on a parameter indicating the reference shock position in the shock-train. The structure of a one dimensional set to which this parameter belongs is investigated. This set contains measure one intervals around the fixed points in the case of periodic or weakly chaotic solutions and it becomes a fractal in the case of strong chaos. The capacity dimension of this set is calculated.Comment: 32 pages, 12 PostScript figures, useses elsart.sty and boxedeps.tex, fig.11 is not included and can be requested from <[email protected]
    • …
    corecore