1,117 research outputs found

    Multimodal biometrics score level fusion using non-confidence information

    Get PDF
    Multimodal biometrics refers to automatic authentication methods that depend on multiple modalities of measurable physical characteristics. It alleviates most of the restrictions of single biometrics. To combine the multimodal biometrics scores, three different categories of fusion approaches including rule based, classification based and density based approaches are available. When choosing an approach, one has to consider not only the fusion performance, but also system requirements and other circumstances. In the context of verification, classification errors arise from samples in the overlapping region (or non- confidence region) between genuine users and impostors. In score space, a further separation of the samples outside the non-confidence region does not result in further verification improvements. Therefore, information contained in the non-confidence region might be useful for improving the fusion process. Up to this point, no attempts are reported in the literature that tries to enhance the fusion process using this additional information. In this work, the use of this information is explored in rule based and density based approaches mentioned above

    Analysis of Score-Level Fusion Rules for Deepfake Detection

    Get PDF
    Deepfake detection is of fundamental importance to preserve the reliability of multimedia communications. Modern deepfake detection systems are often specialized on one or more types of manipulation but are not able to generalize. On the other hand, when properly designed, ensemble learning and fusion techniques can reduce this issue. In this paper, we exploit the complementarity of different individual classifiers and evaluate which fusion rules are best suited to increase the generalization capacity of modern deepfake detection systems. We also give some insights to designers for selecting the most appropriate approach

    Design of a Multi-biometric Platform, based on physical traits and physiological measures: Face, Iris, Ear, ECG and EEG

    Get PDF
    Security and safety is one the main concerns both for governments and for private companies in the last years so raising growing interests and investments in the area of biometric recognition and video surveillance, especially after the sad happenings of September 2001. Outlays assessments of the U.S. government for the years 2001-2005 estimate that the homeland security spending climbed from 56.0billionsofdollarsin2001toalmost56.0 billions of dollars in 2001 to almost 100 billion of 2005. In this lapse of time, new pattern recognition techniques have been developed and, even more important, new biometric traits have been investigated and refined; besides the well-known physical and behavioral characteristics, also physiological measures have been studied, so providing more features to enhance discrimination capabilities of individuals. This dissertation proposes the design of a multimodal biometric platform, FAIRY, based on the following biometric traits: ear, face, iris EEG and ECG signals. In the thesis the modular architecture of the platform has been presented, together with the results obtained for the solution to the recognition problems related to the different biometrics and their possible fusion. Finally, an analysis of the pattern recognition issues concerning the area of videosurveillance has been discussed

    Design of a Multi-biometric Platform, based on physical traits and physiological measures: Face, Iris, Ear, ECG and EEG

    Get PDF
    Security and safety is one the main concerns both for governments and for private companies in the last years so raising growing interests and investments in the area of biometric recognition and video surveillance, especially after the sad happenings of September 2001. Outlays assessments of the U.S. government for the years 2001-2005 estimate that the homeland security spending climbed from 56.0billionsofdollarsin2001toalmost56.0 billions of dollars in 2001 to almost 100 billion of 2005. In this lapse of time, new pattern recognition techniques have been developed and, even more important, new biometric traits have been investigated and refined; besides the well-known physical and behavioral characteristics, also physiological measures have been studied, so providing more features to enhance discrimination capabilities of individuals. This dissertation proposes the design of a multimodal biometric platform, FAIRY, based on the following biometric traits: ear, face, iris EEG and ECG signals. In the thesis the modular architecture of the platform has been presented, together with the results obtained for the solution to the recognition problems related to the different biometrics and their possible fusion. Finally, an analysis of the pattern recognition issues concerning the area of videosurveillance has been discussed

    Handbook of Vascular Biometrics

    Get PDF

    Multimodal Biometric Systems for Personal Identification and Authentication using Machine and Deep Learning Classifiers

    Get PDF
    Multimodal biometrics, using machine and deep learning, has recently gained interest over single biometric modalities. This interest stems from the fact that this technique improves recognition and, thus, provides more security. In fact, by combining the abilities of single biometrics, the fusion of two or more biometric modalities creates a robust recognition system that is resistant to the flaws of individual modalities. However, the excellent recognition of multimodal systems depends on multiple factors, such as the fusion scheme, fusion technique, feature extraction techniques, and classification method. In machine learning, existing works generally use different algorithms for feature extraction of modalities, which makes the system more complex. On the other hand, deep learning, with its ability to extract features automatically, has made recognition more efficient and accurate. Studies deploying deep learning algorithms in multimodal biometric systems tried to find a good compromise between the false acceptance and the false rejection rates (FAR and FRR) to choose the threshold in the matching step. This manual choice is not optimal and depends on the expertise of the solution designer, hence the need to automatize this step. From this perspective, the second part of this thesis details an end-to-end CNN algorithm with an automatic matching mechanism. This thesis has conducted two studies on face and iris multimodal biometric recognition. The first study proposes a new feature extraction technique for biometric systems based on machine learning. The iris and facial features extraction is performed using the Discrete Wavelet Transform (DWT) combined with the Singular Value Decomposition (SVD). Merging the relevant characteristics of the two modalities is used to create a pattern for an individual in the dataset. The experimental results show the robustness of our proposed technique and the efficiency when using the same feature extraction technique for both modalities. The proposed method outperformed the state-of-the-art and gave an accuracy of 98.90%. The second study proposes a deep learning approach using DensNet121 and FaceNet for iris and faces multimodal recognition using feature-level fusion and a new automatic matching technique. The proposed automatic matching approach does not use the threshold to ensure a better compromise between performance and FAR and FRR errors. However, it uses a trained multilayer perceptron (MLP) model that allows people’s automatic classification into two classes: recognized and unrecognized. This platform ensures an accurate and fully automatic process of multimodal recognition. The results obtained by the DenseNet121-FaceNet model by adopting feature-level fusion and automatic matching are very satisfactory. The proposed deep learning models give 99.78% of accuracy, and 99.56% of precision, with 0.22% of FRR and without FAR errors. The proposed and developed platform solutions in this thesis were tested and vali- dated in two different case studies, the central pharmacy of Al-Asria Eye Clinic in Dubai and the Abu Dhabi Police General Headquarters (Police GHQ). The solution allows fast identification of the persons authorized to access the different rooms. It thus protects the pharmacy against any medication abuse and the red zone in the military zone against the unauthorized use of weapons
    • 

    corecore