5,094 research outputs found

    Complex network classification using partially self-avoiding deterministic walks

    Full text link
    Complex networks have attracted increasing interest from various fields of science. It has been demonstrated that each complex network model presents specific topological structures which characterize its connectivity and dynamics. Complex network classification rely on the use of representative measurements that model topological structures. Although there are a large number of measurements, most of them are correlated. To overcome this limitation, this paper presents a new measurement for complex network classification based on partially self-avoiding walks. We validate the measurement on a data set composed by 40.000 complex networks of four well-known models. Our results indicate that the proposed measurement improves correct classification of networks compared to the traditional ones

    Discriminating word senses with tourist walks in complex networks

    Full text link
    Patterns of topological arrangement are widely used for both animal and human brains in the learning process. Nevertheless, automatic learning techniques frequently overlook these patterns. In this paper, we apply a learning technique based on the structural organization of the data in the attribute space to the problem of discriminating the senses of 10 polysemous words. Using two types of characterization of meanings, namely semantical and topological approaches, we have observed significative accuracy rates in identifying the suitable meanings in both techniques. Most importantly, we have found that the characterization based on the deterministic tourist walk improves the disambiguation process when one compares with the discrimination achieved with traditional complex networks measurements such as assortativity and clustering coefficient. To our knowledge, this is the first time that such deterministic walk has been applied to such a kind of problem. Therefore, our finding suggests that the tourist walk characterization may be useful in other related applications

    Using deterministic tourist walk as a small-world metric on Watts-Strogatz networks

    Full text link
    The Watts-Strogatz model (WS) has been demonstrated to effectively describe real-world networks due to its ability to reproduce the small-world properties commonly observed in a variety of systems, including social networks, computer networks, biochemical reactions, and neural networks. As the presence of small-world properties is a prevalent characteristic in many real-world networks, the measurement of "small-worldness" has become a crucial metric in the field of network science, leading to the development of various methods for its assessment over the past two decades. In contrast, the deterministic tourist walk (DTW) method has emerged as a prominent technique for texture analysis and network classification. In this paper, we propose the use of a modified version of the DTW method to classify networks into three categories: regular networks, random networks, and small-world networks. Additionally, we construct a small-world metric, denoted by the coefficient χ\chi, from the DTW method. Results indicate that the proposed method demonstrates excellent performance in the task of network classification, achieving over 90%90\% accuracy. Furthermore, the results obtained using the coefficient χ\chi on real-world networks provide evidence that the proposed method effectively serves as a satisfactory small-world metric.Comment: 9 pages, 4 figure

    A survey of kernel and spectral methods for clustering

    Get PDF
    Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel K-means clustering algorithm. (C) 2007 Pattem Recognition Society. Published by Elsevier Ltd. All rights reserved

    Texture analysis and Its applications in biomedical imaging: a survey

    Get PDF
    Texture analysis describes a variety of image analysis techniques that quantify the variation in intensity and pattern. This paper provides an overview of several texture analysis approaches addressing the rationale supporting them, their advantages, drawbacks, and applications. This survey’s emphasis is in collecting and categorising over five decades of active research on texture analysis.Brief descriptions of different approaches are presented along with application examples. From a broad range of texture analysis applications, this survey’s final focus is on biomedical image analysis. An up-to-date list of biological tissues and organs in which disorders produce texture changes that may be used to spot disease onset and progression is provided. Finally, the role of texture analysis methods as biomarkers of disease is summarised.Manuscript received February 3, 2021; revised June 23, 2021; accepted September 21, 2021. Date of publication September 27, 2021; date of current version January 24, 2022. This work was supported in part by the Portuguese Foundation for Science and Technology (FCT) under Grants PTDC/EMD-EMD/28039/2017, UIDB/04950/2020, PestUID/NEU/04539/2019, and CENTRO-01-0145-FEDER-000016 and by FEDER-COMPETE under Grant POCI-01-0145-FEDER-028039. (Corresponding author: Rui Bernardes.)info:eu-repo/semantics/publishedVersio
    corecore