204 research outputs found

    Multi-task Image Classification via Collaborative, Hierarchical Spike-and-Slab Priors

    Full text link
    Promising results have been achieved in image classification problems by exploiting the discriminative power of sparse representations for classification (SRC). Recently, it has been shown that the use of \emph{class-specific} spike-and-slab priors in conjunction with the class-specific dictionaries from SRC is particularly effective in low training scenarios. As a logical extension, we build on this framework for multitask scenarios, wherein multiple representations of the same physical phenomena are available. We experimentally demonstrate the benefits of mining joint information from different camera views for multi-view face recognition.Comment: Accepted to International Conference in Image Processing (ICIP) 201

    Bayesian compressive sensing framework for spectrum reconstruction in Rayleigh fading channels

    Get PDF
    Compressive sensing (CS) is a novel digital signal processing technique that has found great interest in many applications including communication theory and wireless communications. In wireless communications, CS is particularly suitable for its application in the area of spectrum sensing for cognitive radios, where the complete spectrum under observation, with many spectral holes, can be modeled as a sparse wide-band signal in the frequency domain. Considering the initial works performed to exploit the benefits of Bayesian CS in spectrum sensing, the fading characteristic of wireless communications has not been considered yet to a great extent, although it is an inherent feature for all sorts of wireless communications and it must be considered for the design of any practically viable wireless system. In this paper, we extend the Bayesian CS framework for the recovery of a sparse signal, whose nonzero coefficients follow a Rayleigh distribution. It is then demonstrated via simulations that mean square error significantly improves when appropriate prior distribution is used for the faded signal coefficients and thus, in turns, the spectrum reconstruction improves. Different parameters of the system model, e.g., sparsity level and number of measurements, are then varied to show the consistency of the results for different cases

    SPACE-TA: cost-effective task allocation exploiting intradata and interdata correlations in sparse crowdsensing

    Get PDF
    Data quality and budget are two primary concerns in urban-scale mobile crowdsensing. Traditional research on mobile crowdsensing mainly takes sensing coverage ratio as the data quality metric rather than the overall sensed data error in the target-sensing area. In this article, we propose to leverage spatiotemporal correlations among the sensed data in the target-sensing area to significantly reduce the number of sensing task assignments. In particular, we exploit both intradata correlations within the same type of sensed data and interdata correlations among different types of sensed data in the sensing task. We propose a novel crowdsensing task allocation framework called SPACE-TA (SPArse Cost-Effective Task Allocation), combining compressive sensing, statistical analysis, active learning, and transfer learning, to dynamically select a small set of subareas for sensing in each timeslot (cycle), while inferring the data of unsensed subareas under a probabilistic data quality guarantee. Evaluations on real-life temperature, humidity, air quality, and traffic monitoring datasets verify the effectiveness of SPACE-TA. In the temperature- monitoring task leveraging intradata correlations, SPACE-TA requires data from only 15.5% of the subareas while keeping the inference error below 0.25°C in 95% of the cycles, reducing the number of sensed subareas by 18.0% to 26.5% compared to baselines. When multiple tasks run simultaneously, for example, for temperature and humidity monitoring, SPACE-TA can further reduce ∼10% of the sensed subareas by exploiting interdata correlations

    Compressed sensing for enhanced through-the-wall radar imaging

    Get PDF
    Through-the-wall radar imaging (TWRI) is an emerging technology that aims to capture scenes behind walls and other visually opaque materials. The abilities to sense through walls are highly desirable for both military and civil applications, such as search and rescue missions, surveillance, and reconnaissance. TWRI systems, however, face with several challenges including prolonged data acquisition, large objects, strong wall clutter, and shadowing effects, which limit the radar imaging performances and hinder target detection and localization

    Decentralized Turbo Bayesian ompressed Sensing with application to UWB Systems

    Get PDF
    In many situations, there exist plenty of spatial and temporal redundancies in original signals. Based on this observation, a novel Turbo Bayesian Compressed Sensing (TBCS) algorithm is proposed to provide an efficient approach to transfer and incorporate this redundant information for joint sparse signal reconstruction. As a case study, the TBCS algorithm is applied in Ultra-Wideband (UWB) systems. A space-time TBCS structure is developed for exploiting and incorporating the spatial and temporal a priori information for space-time signal reconstruction. Simulation results demonstrate that the proposed TBCS algorithm achieves much better performance with only a few measurements in the presence of noise, compared with the traditional Bayesian Compressed Sensing (BCS) and multitask BCS algorithms
    • …
    corecore