7,483 research outputs found

    Parallel preconditioners for high order discretizations arising from full system modeling for brain microwave imaging

    Get PDF
    This paper combines the use of high order finite element methods with parallel preconditioners of domain decomposition type for solving electromagnetic problems arising from brain microwave imaging. The numerical algorithms involved in such complex imaging systems are computationally expensive since they require solving the direct problem of Maxwell's equations several times. Moreover, wave propagation problems in the high frequency regime are challenging because a sufficiently high number of unknowns is required to accurately represent the solution. In order to use these algorithms in practice for brain stroke diagnosis, running time should be reasonable. The method presented in this paper, coupling high order finite elements and parallel preconditioners, makes it possible to reduce the overall computational cost and simulation time while maintaining accuracy

    Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    Get PDF
    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation

    Eigenvector Model Descriptors for Solving an Inverse Problem of Helmholtz Equation: Extended Materials

    Full text link
    We study the seismic inverse problem for the recovery of subsurface properties in acoustic media. In order to reduce the ill-posedness of the problem, the heterogeneous wave speed parameter to be recovered is represented using a limited number of coefficients associated with a basis of eigenvectors of a diffusion equation, following the regularization by discretization approach. We compare several choices for the diffusion coefficient in the partial differential equations, which are extracted from the field of image processing. We first investigate their efficiency for image decomposition (accuracy of the representation with respect to the number of variables and denoising). Next, we implement the method in the quantitative reconstruction procedure for seismic imaging, following the Full Waveform Inversion method, where the difficulty resides in that the basis is defined from an initial model where none of the actual structures is known. In particular, we demonstrate that the method is efficient for the challenging reconstruction of media with salt-domes. We employ the method in two and three-dimensional experiments and show that the eigenvector representation compensates for the lack of low frequency information, it eventually serves us to extract guidelines for the implementation of the method.Comment: 45 pages, 37 figure

    Numerical homogenization of H(curl)-problems

    Get PDF
    If an elliptic differential operator associated with an H(curl)\mathbf{H}(\mathrm{curl})-problem involves rough (rapidly varying) coefficients, then solutions to the corresponding H(curl)\mathbf{H}(\mathrm{curl})-problem admit typically very low regularity, which leads to arbitrarily bad convergence rates for conventional numerical schemes. The goal of this paper is to show that the missing regularity can be compensated through a corrector operator. More precisely, we consider the lowest order N\'ed\'elec finite element space and show the existence of a linear corrector operator with four central properties: it is computable, H(curl)\mathbf{H}(\mathrm{curl})-stable, quasi-local and allows for a correction of coarse finite element functions so that first-order estimates (in terms of the coarse mesh-size) in the H(curl)\mathbf{H}(\mathrm{curl}) norm are obtained provided the right-hand side belongs to H(div)\mathbf{H}(\mathrm{div}). With these four properties, a practical application is to construct generalized finite element spaces which can be straightforwardly used in a Galerkin method. In particular, this characterizes a homogenized solution and a first order corrector, including corresponding quantitative error estimates without the requirement of scale separation
    corecore