11,864 research outputs found

    Adversarial Propagation and Zero-Shot Cross-Lingual Transfer of Word Vector Specialization

    Get PDF
    Semantic specialization is the process of fine-tuning pre-trained distributional word vectors using external lexical knowledge (e.g., WordNet) to accentuate a particular semantic relation in the specialized vector space. While post-processing specialization methods are applicable to arbitrary distributional vectors, they are limited to updating only the vectors of words occurring in external lexicons (i.e., seen words), leaving the vectors of all other words unchanged. We propose a novel approach to specializing the full distributional vocabulary. Our adversarial post-specialization method propagates the external lexical knowledge to the full distributional space. We exploit words seen in the resources as training examples for learning a global specialization function. This function is learned by combining a standard L2-distance loss with an adversarial loss: the adversarial component produces more realistic output vectors. We show the effectiveness and robustness of the proposed method across three languages and on three tasks: word similarity, dialog state tracking, and lexical simplification. We report consistent improvements over distributional word vectors and vectors specialized by other state-of-the-art specialization frameworks. Finally, we also propose a cross-lingual transfer method for zero-shot specialization which successfully specializes a full target distributional space without any lexical knowledge in the target language and without any bilingual data.Comment: Accepted at EMNLP 201

    Exploratory topic modeling with distributional semantics

    Full text link
    As we continue to collect and store textual data in a multitude of domains, we are regularly confronted with material whose largely unknown thematic structure we want to uncover. With unsupervised, exploratory analysis, no prior knowledge about the content is required and highly open-ended tasks can be supported. In the past few years, probabilistic topic modeling has emerged as a popular approach to this problem. Nevertheless, the representation of the latent topics as aggregations of semi-coherent terms limits their interpretability and level of detail. This paper presents an alternative approach to topic modeling that maps topics as a network for exploration, based on distributional semantics using learned word vectors. From the granular level of terms and their semantic similarity relations global topic structures emerge as clustered regions and gradients of concepts. Moreover, the paper discusses the visual interactive representation of the topic map, which plays an important role in supporting its exploration.Comment: Conference: The Fourteenth International Symposium on Intelligent Data Analysis (IDA 2015

    A distributional model of semantic context effects in lexical processinga

    Get PDF
    One of the most robust findings of experimental psycholinguistics is that the context in which a word is presented influences the effort involved in processing that word. We present a novel model of contextual facilitation based on word co-occurrence prob ability distributions, and empirically validate the model through simulation of three representative types of context manipulation: single word priming, multiple-priming and contextual constraint. In our simulations the effects of semantic context are mod eled using general-purpose techniques and representations from multivariate statistics, augmented with simple assumptions reflecting the inherently incremental nature of speech understanding. The contribution of our study is to show that special-purpose m echanisms are not necessary in order to capture the general pattern of the experimental results, and that a range of semantic context effects can be subsumed under the same principled account.ā€ŗ

    Using Sparse Semantic Embeddings Learned from Multimodal Text and Image Data to Model Human Conceptual Knowledge

    Get PDF
    Distributional models provide a convenient way to model semantics using dense embedding spaces derived from unsupervised learning algorithms. However, the dimensions of dense embedding spaces are not designed to resemble human semantic knowledge. Moreover, embeddings are often built from a single source of information (typically text data), even though neurocognitive research suggests that semantics is deeply linked to both language and perception. In this paper, we combine multimodal information from both text and image-based representations derived from state-of-the-art distributional models to produce sparse, interpretable vectors using Joint Non-Negative Sparse Embedding. Through in-depth analyses comparing these sparse models to human-derived behavioural and neuroimaging data, we demonstrate their ability to predict interpretable linguistic descriptions of human ground-truth semantic knowledge.Comment: Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 260-270. Brussels, Belgium, October 31 - November 1, 2018. Association for Computational Linguistic
    • ā€¦
    corecore