28 research outputs found

    Multi-Resolution Functional ANOVA for Large-Scale, Many-Input Computer Experiments

    Full text link
    The Gaussian process is a standard tool for building emulators for both deterministic and stochastic computer experiments. However, application of Gaussian process models is greatly limited in practice, particularly for large-scale and many-input computer experiments that have become typical. We propose a multi-resolution functional ANOVA model as a computationally feasible emulation alternative. More generally, this model can be used for large-scale and many-input non-linear regression problems. An overlapping group lasso approach is used for estimation, ensuring computational feasibility in a large-scale and many-input setting. New results on consistency and inference for the (potentially overlapping) group lasso in a high-dimensional setting are developed and applied to the proposed multi-resolution functional ANOVA model. Importantly, these results allow us to quantify the uncertainty in our predictions. Numerical examples demonstrate that the proposed model enjoys marked computational advantages. Data capabilities, both in terms of sample size and dimension, meet or exceed best available emulation tools while meeting or exceeding emulation accuracy

    Lightning forecast from chaotic and incomplete time series using wavelet de-noising and spatiotemporal kriging

    Get PDF
    Purpose – Present a method to impute missing data from a chaotic time series, in this case lightning prediction data, and then use that completed dataset to create lightning prediction forecasts. Design/methodology/approach – Using the technique of spatiotemporal kriging to estimate data that is autocorrelated but in space and time. Using the estimated data in an imputation methodology completes a dataset used in lightning prediction. Findings – The techniques provided prove robust to the chaotic nature of the data, and the resulting time series displays evidence of smoothing while also preserving the signal of interest for lightning prediction. Research limitations/implications – The research is limited to the data collected in support of weather prediction work through the 45th Weather Squadron of the United States Air Force. Practical implications – These methods are important due to the increasing reliance on sensor systems. These systems often provide incomplete and chaotic data, which must be used despite collection limitations. This work establishes a viable data imputation methodology. Social implications – Improved lightning prediction, as with any improved prediction methods for natural weather events, can save lives and resources due to timely, cautious behaviors as a result of the predictions. Originality/value – Based on the authors’ knowledge, this is a novel application of these imputation methods and the forecasting methods

    Quantificação de incertezas em reservatórios de petróleo : uma abordagem Bayesiana estruturada

    Get PDF
    Orientadores: Denis José Schiozer e Camila Caiado; Ian Vernon; Michael Goldstein, Guilherme Daniel AvansiTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Durham UniversityResumo: Essa tese propõe uma abordagem Bayesiana sistemática para quantificação de incertezas de reservatórios de petróleo. No primeiro artigo, demonstramos o potencial de funções-objetivo adicionais que são baseadas em eventos específicos da fase de gerenciamento de reservatórios, a fim de melhorar a representação do comportamento do reservatório e a qualidade da previsão probabilística. Irrupção de água e desvio de produtividade foram selecionados, proporcionando um entendimento de descontinuidades no modelo numérico e nos dados de simulação quando comparado com o uso exclusivo de funções objetivo tradicionais (por exemplo, taxa de produção). No segundo artigo, definimos e implementados uma metodologia sistemática para redução de incertezas que combina simulação de reservatórios e técnicas de emulação em uma abordagem de Ajuste de Histórico Bayesiano para Redução de Incertezas (BHMUR, Bayesian History Matching for Uncertainty Reduction, acrônimo em inglês). Flexibilidade, repetitividade e escalabilidade são as características principais dessa estrutura geral que incorpora inovações tais como fases de avaliação e múltiplas técnicas de emulação. Esse procedimento potencialmente transforma a prática de BHMUR em uma mais padronizada para diversas aplicações. Aplicamos em um estudo de caso com 26 atributos incertos, dados de produção de 25 poços e 11+ anos de dados de histórico de produção baseado em uma realidade hipotética, resultando na construção de 115 emuladores validados e uma pequena fração do espaço de busca apropriadamente considerada não-implausível ao final do processo de redução de incertezas. No terceiro artigo, expandimos metodologias para estágios críticos na prática de BHMUR: (1) extensão da formulação estatística de BHMUR para acomodar emuladores do tipo classificadores; (2) seleção efetiva de uma combinação de dados de produção para emulação; (3) validação de emuladores baseados em múltiplos critérios; e (4) consideração de erros sistemáticos e aleatórios em dados observados. No último artigo, avaliamos um passo crítico para a prática de BHMUR, que é a quantificação de discrepância do modelo para contabilizar a representação de sistemas físicos a partir de modelos imperfeitos. Propusemos uma metodologia para quantificar a discrepância do modelo originada em erros de dados medidos e informados ao simulador numérico como condição de contorno (target). A aplicação da metodologia demonstrou que a discrepância do modelo é simultaneamente dependente de tempo e da posição no espaço de busca: uma descoberta importante para orientar o processo de quantificação de incertezas em estudos de caso baseados em reservatórios de petróleo reaisAbstract: This thesis proposes a systematic Bayesian approach for uncertainty quantification with an application for petroleum reservoirs. First, we demonstrated the potential of additional misfit functions based on specific events in reservoir management, to gain knowledge about reservoir behaviour and quality in probabilistic forecasting. Water breakthrough and productivity deviation were selected and provided insights of discontinuities in simulation data when compared to the use of traditional misfit functions (e.g. production rate, BHP) alone. Second, we designed and implemented a systematic methodology for uncertainty reduction combining reservoir simulation and emulation techniques under the Bayesian History Matching for Uncertainty Reduction (BHMUR) approach. Flexibility, repeatability and scalability are the main features of this high-level structure, incorporating innovations such as phases of evaluation and multiple emulation techniques. This workflow potentially turns the practice of BHMUR more standardised across applications. It was applied for a complex case study, with 26 uncertainties, outputs from 25 wells and 11+ years of historical data based on a hypothetical reality, resulting in the construction of 115 valid emulators and a small fraction of the original searching space appropriately considered non-implausible by the end of the uncertainty reduction process. Third, we expanded methodologies for critical steps in the BHMUR practice: (1) extension of statistical formulation to two-class emulators; (2) efficient selection of a combination of outputs to emulate; (3) validation of emulators based on multiple criteria; and (4) accounting for systematic and random errors in observed data. Finally, a critical step in the BHMUR approach is the quantification of model discrepancy which accounts for imperfect models aiming to represent a real physical system. We proposed a methodology to quantify the model discrepancy originated from errors in target data that are set as boundary conditions in a numerical simulator. Its application demonstrated that model discrepancy is dependent on both time and location in the input space, which is a central finding to guide the BHMUR practice in case of studies based on real fieldsDoutoradoReservatórios e GestãoDoutora em Ciências e Engenharia de Petróleo206985/2017-7CNPQFUNCAM
    corecore