6,154 research outputs found

    Convolutional Drift Networks for Video Classification

    Full text link
    Analyzing spatio-temporal data like video is a challenging task that requires processing visual and temporal information effectively. Convolutional Neural Networks have shown promise as baseline fixed feature extractors through transfer learning, a technique that helps minimize the training cost on visual information. Temporal information is often handled using hand-crafted features or Recurrent Neural Networks, but this can be overly specific or prohibitively complex. Building a fully trainable system that can efficiently analyze spatio-temporal data without hand-crafted features or complex training is an open challenge. We present a new neural network architecture to address this challenge, the Convolutional Drift Network (CDN). Our CDN architecture combines the visual feature extraction power of deep Convolutional Neural Networks with the intrinsically efficient temporal processing provided by Reservoir Computing. In this introductory paper on the CDN, we provide a very simple baseline implementation tested on two egocentric (first-person) video activity datasets.We achieve video-level activity classification results on-par with state-of-the art methods. Notably, performance on this complex spatio-temporal task was produced by only training a single feed-forward layer in the CDN.Comment: Published in IEEE Rebooting Computin

    Methodologies for the Automatic Location of Academic and Educational Texts on the Internet

    Get PDF
    Traditionally online databases of web resources have been compiled by a human editor, or though the submissions of authors or interested parties. Considerable resources are needed to maintain a constant level of input and relevance in the face of increasing material quantity and quality, and much of what is in databases is of an ephemeral nature. These pressures dictate that many databases stagnate after an initial period of enthusiastic data entry. The solution to this problem would seem to be the automatic harvesting of resources, however, this process necessitates the automatic classification of resources as ‘appropriate’ to a given database, a problem only solved by complex text content analysis. This paper outlines the component methodologies necessary to construct such an automated harvesting system, including a number of novel approaches. In particular this paper looks at the specific problems of automatically identifying academic research work and Higher Education pedagogic materials. Where appropriate, experimental data is presented from searches in the field of Geography as well as the Earth and Environmental Sciences. In addition, appropriate software is reviewed where it exists, and future directions are outlined

    Methodologies for the Automatic Location of Academic and Educational Texts on the Internet

    Get PDF
    Traditionally online databases of web resources have been compiled by a human editor, or though the submissions of authors or interested parties. Considerable resources are needed to maintain a constant level of input and relevance in the face of increasing material quantity and quality, and much of what is in databases is of an ephemeral nature. These pressures dictate that many databases stagnate after an initial period of enthusiastic data entry. The solution to this problem would seem to be the automatic harvesting of resources, however, this process necessitates the automatic classification of resources as ‘appropriate’ to a given database, a problem only solved by complex text content analysis. This paper outlines the component methodologies necessary to construct such an automated harvesting system, including a number of novel approaches. In particular this paper looks at the specific problems of automatically identifying academic research work and Higher Education pedagogic materials. Where appropriate, experimental data is presented from searches in the field of Geography as well as the Earth and Environmental Sciences. In addition, appropriate software is reviewed where it exists, and future directions are outlined

    Intelligent indexing of crime scene photographs

    Get PDF
    The Scene of Crime Information System's automatic image-indexing prototype goes beyond extracting keywords and syntactic relations from captions. The semantic information it gathers gives investigators an intuitive, accurate way to search a database of cases for specific photographic evidence. Intelligent, automatic indexing and retrieval of crime scene photographs is one of the main functions of SOCIS, our research prototype developed within the Scene of Crime Information System project. The prototype, now in its final development and evaluation phase, applies advanced natural language processing techniques to text-based image indexing and retrieval to tackle crime investigation needs effectively and efficiently

    Speed/accuracy trade-offs for modern convolutional object detectors

    Full text link
    The goal of this paper is to serve as a guide for selecting a detection architecture that achieves the right speed/memory/accuracy balance for a given application and platform. To this end, we investigate various ways to trade accuracy for speed and memory usage in modern convolutional object detection systems. A number of successful systems have been proposed in recent years, but apples-to-apples comparisons are difficult due to different base feature extractors (e.g., VGG, Residual Networks), different default image resolutions, as well as different hardware and software platforms. We present a unified implementation of the Faster R-CNN [Ren et al., 2015], R-FCN [Dai et al., 2016] and SSD [Liu et al., 2015] systems, which we view as "meta-architectures" and trace out the speed/accuracy trade-off curve created by using alternative feature extractors and varying other critical parameters such as image size within each of these meta-architectures. On one extreme end of this spectrum where speed and memory are critical, we present a detector that achieves real time speeds and can be deployed on a mobile device. On the opposite end in which accuracy is critical, we present a detector that achieves state-of-the-art performance measured on the COCO detection task.Comment: Accepted to CVPR 201

    Unsupervised Domain Adaptation by Backpropagation

    Full text link
    Top-performing deep architectures are trained on massive amounts of labeled data. In the absence of labeled data for a certain task, domain adaptation often provides an attractive option given that labeled data of similar nature but from a different domain (e.g. synthetic images) are available. Here, we propose a new approach to domain adaptation in deep architectures that can be trained on large amount of labeled data from the source domain and large amount of unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of "deep" features that are (i) discriminative for the main learning task on the source domain and (ii) invariant with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a simple new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation. Overall, the approach can be implemented with little effort using any of the deep-learning packages. The method performs very well in a series of image classification experiments, achieving adaptation effect in the presence of big domain shifts and outperforming previous state-of-the-art on Office datasets
    • …
    corecore