6,842 research outputs found

    Systematic redundant residue number system codes: analytical upper bound and iterative decoding performance over AWGN and Rayleigh channels

    No full text
    The novel family of redundant residue number system (RRNS) codes is studied. RRNS codes constitute maximum–minimum distance block codes, exhibiting identical distance properties to Reed–Solomon codes. Binary to RRNS symbol-mapping methods are proposed, in order to implement both systematic and nonsystematic RRNS codes. Furthermore, the upper-bound performance of systematic RRNS codes is investigated, when maximum-likelihood (ML) soft decoding is invoked. The classic Chase algorithm achieving near-ML soft decoding is introduced for the first time for RRNS codes, in order to decrease the complexity of the ML soft decoding. Furthermore, the modified Chase algorithm is employed to accept soft inputs, as well as to provide soft outputs, assisting in the turbo decoding of RRNS codes by using the soft-input/soft-output Chase algorithm. Index Terms—Redundant residue number system (RRNS), residue number system (RNS), turbo detection

    Abstract algebra, projective geometry and time encoding of quantum information

    Full text link
    Algebraic geometrical concepts are playing an increasing role in quantum applications such as coding, cryptography, tomography and computing. We point out here the prominent role played by Galois fields viewed as cyclotomic extensions of the integers modulo a prime characteristic pp. They can be used to generate efficient cyclic encoding, for transmitting secrete quantum keys, for quantum state recovery and for error correction in quantum computing. Finite projective planes and their generalization are the geometric counterpart to cyclotomic concepts, their coordinatization involves Galois fields, and they have been used repetitively for enciphering and coding. Finally the characters over Galois fields are fundamental for generating complete sets of mutually unbiased bases, a generic concept of quantum information processing and quantum entanglement. Gauss sums over Galois fields ensure minimum uncertainty under such protocols. Some Galois rings which are cyclotomic extensions of the integers modulo 4 are also becoming fashionable for their role in time encoding and mutual unbiasedness.Comment: To appear in R. Buccheri, A.C. Elitzur and M. Saniga (eds.), "Endophysics, Time, Quantum and the Subjective," World Scientific, Singapore. 16 page

    Algorithms in algebraic number theory

    Get PDF
    In this paper we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on aspects that are of interest from a purely mathematical point of view, and practical issues are largely disregarded. We describe what has been done and, more importantly, what remains to be done in the area. We hope to show that the study of algorithms not only increases our understanding of algebraic number fields but also stimulates our curiosity about them. The discussion is concentrated of three topics: the determination of Galois groups, the determination of the ring of integers of an algebraic number field, and the computation of the group of units and the class group of that ring of integers.Comment: 34 page

    Brown's moduli spaces of curves and the gravity operad

    Full text link
    This paper is built on the following observation: the purity of the mixed Hodge structure on the cohomology of Brown's moduli spaces is essentially equivalent to the freeness of the dihedral operad underlying the gravity operad. We prove these two facts by relying on both the geometric and the algebraic aspects of the problem: the complete geometric description of the cohomology of Brown's moduli spaces and the coradical filtration of cofree cooperads. This gives a conceptual proof of an identity of Bergstr\"om-Brown which expresses the Betti numbers of Brown's moduli spaces via the inversion of a generating series. This also generalizes the Salvatore-Tauraso theorem on the nonsymmetric Lie operad.Comment: 26 pages; corrected Figure
    • 

    corecore