1,313 research outputs found

    Pattern vectors from algebraic graph theory

    Get PDF
    Graphstructures have proven computationally cumbersome for pattern analysis. The reason for this is that, before graphs can be converted to pattern vectors, correspondences must be established between the nodes of structures which are potentially of different size. To overcome this problem, in this paper, we turn to the spectral decomposition of the Laplacian matrix. We show how the elements of the spectral matrix for the Laplacian can be used to construct symmetric polynomials that are permutation invariants. The coefficients of these polynomials can be used as graph features which can be encoded in a vectorial manner. We extend this representation to graphs in which there are unary attributes on the nodes and binary attributes on the edges by using the spectral decomposition of a Hermitian property matrix that can be viewed as a complex analogue of the Laplacian. To embed the graphs in a pattern space, we explore whether the vectors of invariants can be embedded in a low- dimensional space using a number of alternative strategies, including principal components analysis ( PCA), multidimensional scaling ( MDS), and locality preserving projection ( LPP). Experimentally, we demonstrate that the embeddings result in well- defined graph clusters. Our experiments with the spectral representation involve both synthetic and real- world data. The experiments with synthetic data demonstrate that the distances between spectral feature vectors can be used to discriminate between graphs on the basis of their structure. The real- world experiments show that the method can be used to locate clusters of graphs

    Multi-scale and multi-spectral shape analysis: from 2d to 3d

    Get PDF
    Shape analysis is a fundamental aspect of many problems in computer graphics and computer vision, including shape matching, shape registration, object recognition and classification. Since the SIFT achieves excellent matching results in 2D image domain, it inspires us to convert the 3D shape analysis to 2D image analysis using geometric maps. However, the major disadvantage of geometric maps is that it introduces inevitable, large distortions when mapping large, complex and topologically complicated surfaces to a canonical domain. It is demanded for the researchers to construct the scale space directly on the 3D shape. To address these research issues, in this dissertation, in order to find the multiscale processing for the 3D shape, we start with shape vector image diffusion framework using the geometric mapping. Subsequently, we investigate the shape spectrum field by introducing the implementation and application of Laplacian shape spectrum. In order to construct the scale space on 3D shape directly, we present a novel idea to solve the diffusion equation using the manifold harmonics in the spectral point of view. Not only confined on the mesh, by using the point-based manifold harmonics, we rigorously derive our solution from the diffusion equation which is the essential of the scale space processing on the manifold. Built upon the point-based manifold harmonics transform, we generalize the diffusion function directly on the point clouds to create the scale space. In virtue of the multiscale structure from the scale space, we can detect the feature points and construct the descriptor based on the local neighborhood. As a result, multiscale shape analysis directly on the 3D shape can be achieved

    Learning Collective Behavior in Multi-relational Networks

    Get PDF
    With the rapid expansion of the Internet and WWW, the problem of analyzing social media data has received an increasing amount of attention in the past decade. The boom in social media platforms offers many possibilities to study human collective behavior and interactions on an unprecedented scale. In the past, much work has been done on the problem of learning from networked data with homogeneous topologies, where instances are explicitly or implicitly inter-connected by a single type of relationship. In contrast to traditional content-only classification methods, relational learning succeeds in improving classification performance by leveraging the correlation of the labels between linked instances. However, networked data extracted from social media, web pages, and bibliographic databases can contain entities of multiple classes and linked by various causal reasons, hence treating all links in a homogeneous way can limit the performance of relational classifiers. Learning the collective behavior and interactions in heterogeneous networks becomes much more complex. The contribution of this dissertation include 1) two classification frameworks for identifying human collective behavior in multi-relational social networks; 2) unsupervised and supervised learning models for relationship prediction in multi-relational collaborative networks. Our methods improve the performance of homogeneous predictive models by differentiating heterogeneous relations and capturing the prominent interaction patterns underlying the network structure. The work has been evaluated in various real-world social networks. We believe that this study will be useful for analyzing human collective behavior and interactions specifically in the scenario when the heterogeneous relationships in the network arise from various causal reasons

    Graph edit distance from spectral seriation

    Get PDF
    This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that they lack some of the formality and rigor of the computation of string edit distance. Hence, our aim is to convert graphs to string sequences so that string matching techniques can be used. To do this, we use a graph spectral seriation method to convert the adjacency matrix into a string or sequence order. We show how the serial ordering can be established using the leading eigenvector of the graph adjacency matrix. We pose the problem of graph-matching as a maximum a posteriori probability (MAP) alignment of the seriation sequences for pairs of graphs. This treatment leads to an expression in which the edit cost is the negative logarithm of the a posteriori sequence alignment probability. We compute the edit distance by finding the sequence of string edit operations which minimizes the cost of the path traversing the edit lattice. The edit costs are determined by the components of the leading eigenvectors of the adjacency matrix and by the edge densities of the graphs being matched. We demonstrate the utility of the edit distance on a number of graph clustering problems

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference

    Descriptor Based Analysis of Digital 3D Shapes

    Get PDF

    Constructing Desirable Scalar Fields for Morse Analysis on Meshes

    Get PDF
    Morse theory is a powerful mathematical tool that uses the local differential properties of a manifold to make conclusions about global topological aspects of the manifold. Morse theory has been proven to be a very useful tool in computer graphics, geometric data processing and understanding. This work is divided into two parts. The first part is concerned with constructing geometry and symmetry aware scalar functions on a triangulated 22-manifold. To effectively apply Morse theory to discrete manifolds, one needs to design scalar functions on them with certain properties such as respecting the symmetry and the geometry of the surface and having the critical points of the scalar function coincide with feature or symmetry points on the surface. In this work, we study multiple methods that were suggested in the literature to construct such functions such as isometry invariant scalar functions, Poisson fields and discrete conformal factors. We suggest multiple refinements to each family of these functions and we propose new methods to construct geometry and symmetry-aware scalar functions using mainly the theory of the Laplace-Beltrami operator. Our proposed methods are general and can be applied in many areas such as parametrization, shape analysis, symmetry detection and segmentation. In the second part of the thesis we utilize Morse theory to give topologically consistent segmentation algorithms
    • …
    corecore