10,924 research outputs found

    A framework for the simulation of structural software evolution

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 ACM.As functionality is added to an aging piece of software, its original design and structure will tend to erode. This can lead to high coupling, low cohesion and other undesirable effects associated with spaghetti architectures. The underlying forces that cause such degradation have been the subject of much research. However, progress in this field is slow, as its complexity makes it difficult to isolate the causal flows leading to these effects. This is further complicated by the difficulty of generating enough empirical data, in sufficient quantity, and attributing such data to specific points in the causal chain. This article describes a framework for simulating the structural evolution of software. A complete simulation model is built by incrementally adding modules to the framework, each of which contributes an individual evolutionary effect. These effects are then combined to form a multifaceted simulation that evolves a fictitious code base in a manner approximating real-world behavior. We describe the underlying principles and structures of our framework from a theoretical and user perspective; a validation of a simple set of evolutionary parameters is then provided and three empirical software studies generated from open-source software (OSS) are used to support claims and generated results. The research illustrates how simulation can be used to investigate a complex and under-researched area of the development cycle. It also shows the value of incorporating certain human traits into a simulation—factors that, in real-world system development, can significantly influence evolutionary structures

    Efficient Action Detection in Untrimmed Videos via Multi-Task Learning

    Full text link
    This paper studies the joint learning of action recognition and temporal localization in long, untrimmed videos. We employ a multi-task learning framework that performs the three highly related steps of action proposal, action recognition, and action localization refinement in parallel instead of the standard sequential pipeline that performs the steps in order. We develop a novel temporal actionness regression module that estimates what proportion of a clip contains action. We use it for temporal localization but it could have other applications like video retrieval, surveillance, summarization, etc. We also introduce random shear augmentation during training to simulate viewpoint change. We evaluate our framework on three popular video benchmarks. Results demonstrate that our joint model is efficient in terms of storage and computation in that we do not need to compute and cache dense trajectory features, and that it is several times faster than its sequential ConvNets counterpart. Yet, despite being more efficient, it outperforms state-of-the-art methods with respect to accuracy.Comment: WACV 2017 camera ready, minor updates about test time efficienc

    Flight investigation of various control inputs intended for parameter estimation

    Get PDF
    An experiment assessing the stability and control derivatives resulting from various control inputs was undertaken using the F-8 digital fly by wire aircraft. Improved control inputs have been proposed as a means of making stability and contol derivative estimation more efficient, thus reducing the cost of flight testing and data analysis. The subject inputs were either generated by the pilot or preprogrammed in a remote ground computer and telemetered to the aircraft. Nine preprogrammed inputs and three pilot generated inputs were assessed at subsonic and supersonic flight conditions, and both unaugmented and highly augmented flight control systems were used. Effects of input amplitude were also assessed. The inputs were divided into two general types - sinusoidal or with corners (a rapid and distinct change in slope). The inputs with corners, performed in the unaugmented mode, produced the best sets of stability and control derivatives. The simplest of these inputs, the pilot generated doublet, produced sets of derivatives as good as those produced by the more complex inputs. Small inputs produced worse derivatives than the unaugmented mode, and sinusoidal inputs produced worse derivatives than corner containing inputs

    Model diagnostics and refinement for phylodynamic models

    Get PDF
    <div><p>Phylodynamic modelling, which studies the joint dynamics of epidemiological and evolutionary processes, has made significant progress in recent years due to increasingly available genomic data and advances in statistical modelling. These advances have greatly improved our understanding of transmission dynamics of many important pathogens. Nevertheless, there remains a lack of effective, targetted diagnostic tools for systematically detecting model mis-specification. Development of such tools is essential for model criticism, refinement, and calibration. The idea of utilising <i>latent residuals</i> for model assessment has already been exploited in general spatio-temporal epidemiological settings. Specifically, by proposing appropriately designed non-centered, re-parameterizations of a given epidemiological process, one can construct latent residuals with known sampling distributions which can be used to quantify evidence of model mis-specification. In this paper, we extend this idea to formulate a novel model-diagnostic framework for phylodynamic models. Using simulated examples, we show that our framework may effectively detect a particular form of mis-specification in a phylodynamic model, particularly in the event of superspreading. We also exemplify our approach by applying the framework to a dataset describing a local foot-and-mouth (FMD) outbreak in the UK, eliciting strong evidence against the assumption of no within-host-diversity in the outbreak. We further demonstrate that our framework can facilitate model calibration in real-life scenarios, by proposing a within-host-diversity model which appears to offer a better fit to data than one that assumes no within-host-diversity of FMD virus.</p></div
    • 

    corecore