2,332 research outputs found

    Complex dynamics emerging in Rule 30 with majority memory

    Get PDF
    In cellular automata with memory, the unchanged maps of the conventional cellular automata are applied to cells endowed with memory of their past states in some specified interval. We implement Rule 30 automata with a majority memory and show that using the memory function we can transform quasi-chaotic dynamics of classical Rule 30 into domains of travelling structures with predictable behaviour. We analyse morphological complexity of the automata and classify dynamics of gliders (particles, self-localizations) in memory-enriched Rule 30. We provide formal ways of encoding and classifying glider dynamics using de Bruijn diagrams, soliton reactions and quasi-chemical representations

    Cellular automaton supercolliders

    Get PDF
    Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular-automaton analogous of localizations or quasi-local collective excitations travelling in a spatially extended non-linear medium. They can be considered as binary strings or symbols travelling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyse what types of interaction occur between gliders travelling on a cellular automaton `cyclotron' and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in non-linear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analysed via implementation of cyclic tag systems

    A Computation in a Cellular Automaton Collider Rule 110

    Full text link
    A cellular automaton collider is a finite state machine build of rings of one-dimensional cellular automata. We show how a computation can be performed on the collider by exploiting interactions between gliders (particles, localisations). The constructions proposed are based on universality of elementary cellular automaton rule 110, cyclic tag systems, supercolliders, and computing on rings.Comment: 39 pages, 32 figures, 3 table

    Probabilistic initial value problem for cellular automaton rule 172

    Full text link
    We consider the problem of computing a response curve for binary cellular automata -- that is, the curve describing the dependence of the density of ones after many iterations of the rule on the initial density of ones. We demonstrate how this problem could be approached using rule 130 as an example. For this rule, preimage sets of finite strings exhibit recognizable patterns, and it is therefore possible to compute both cardinalities of preimages of certain finite strings and probabilities of occurrence of these strings in a configuration obtained by iterating a random initial configuration nn times. Response curves can be rigorously calculated in both one- and two-dimensional versions of CA rule 130. We also discuss a special case of totally disordered initial configurations, that is, random configurations where the density of ones and zeros are equal to 1/2.Comment: 13 pages, 3 figure
    • …
    corecore