31,967 research outputs found

    ISML: an interface specification meta-language

    Get PDF
    In this paper we present an abstract metaphor model situated within a model-based user interface framework. The inclusion of metaphors in graphical user interfaces is a well established, but mostly craft-based strategy to design. A substantial body of notations and tools can be found within the model-based user interface design literature, however an explicit treatment of metaphor and its mappings to other design views has yet to be addressed. We introduce the Interface Specification Meta-Language (ISML) framework and demonstrate its use in comparing the semantic and syntactic features of an interactive system. Challenges facing this research are outlined and further work proposed

    Business-oriented development of telecommunication services

    Get PDF
    The development of software for distributed systems, e.g. telecommunication services, is a complex activity. Numerous issues have to be resolved when developing such systems, examples of which are language/system heterogeneity and remoteness of components. Interface definition languages (IDLs) are used as the basis for addressing some of these issues. IDLs allow for the specification of the syntactic aspects of the interfaces of the components in the system to be made. Whilst lending itself to issues of heterogeneity and location transparency, dealing with IDL as the basis for system development is not without its problems. Two of the main problems with IDL are its lack of behaviour and its lack of abstraction. Thus designers should not be constrained to work within the syntactic notations used to implement their systems, nor should they be unaided in how they might better design their systems. In this paper we show how these issues are being addressed in the TOSCA project in its development of a service creation and validation environment

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Development of a client interface for a methodology independent object-oriented CASE tool : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    The overall aim of the research presented in this thesis is the development of a prototype CASE Tool user interface that supports the use of arbitrary methodology notations for the construction of small-scale diagrams. This research is part of the larger CASE Tool project, MOOT (Massey's Object Oriented Tool). MOOT is a meta-system with a client-server architecture that provides a framework within which the semantics and syntax of methodologies can be described. The CASE Tool user interface is implemented in Java so it is as portable as possible and has a consistent look and feel. It has been designed as a client to the rest of the MOOT system (which acts as a server). A communications protocol has been designed to support the interaction between the CASE Tool client and a MOOT server. The user interface design of MOOT must support all possible graphical notations. No assumptions about the types of notations that a software engineer may use can be made. MOOT therefore provides a specification language called NDL for the definition of a methodology's syntax. Hence, the MOOT CASE Tool client described in this thesis is a shell that is parameterised by NDL specifications. The flexibility provided by such a high level of abstraction presents significant challenges in terms of designing effective human-computer interaction mechanisms for the MOOT user interface. Functional and non-functional requirements of the client user interface have been identified and applied during the construction of the prototype. A notation specification that defines the syntax for Coad and Yourdon OOA/OOD has been written in NDL and used as a test case. The thesis includes the iterative evaluation and extension of NDL resulting from the prototype development. The prototype has shown that the current approach to NDL is efficacious, and that the syntax and semantics of a methodology description can successfully be separated. The developed prototype has shown that it is possible to build a simple, non-intrusive, and efficient, yet flexible, useable, and helpful interface for meta-CASE tools. The development of the CASE Tool client, through its generic, methodology independent design, has provided a pilot with which future ideas may be explored

    Inviwo -- A Visualization System with Usage Abstraction Levels

    Full text link
    The complexity of today's visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities

    Frameworks: the future of formal software development?

    Get PDF
    It could be argued that the primary issue to be dealt with in software engineering today is re-use of software. Current software development rarely, if ever, starts from nothing. Unfortunately, the same cannot be said for the development of specifications. To overcome this problem, various works have attempted to show how specifications can be built using architectural principles. We discuss one such approach in particular, the Architectural Semantics of Open Distributed Processing. We show the limitations of this work with regard to the architecting of specifications and propose a new approach, based on frameworks. To highlight the approach we use the work currently being done in the TOSCA project in its development of a service creation and validation environment for telecommunication services
    • ā€¦
    corecore