64 research outputs found

    Complex Attribute Manipulation in TGGs with Constraint-Based Programming Techniques

    Get PDF
    Model transformation plays a central role in Model-Driven Engineering (MDE) and providing bidirectional transformation languages is a current challenge with important applications.  Triple Graph Grammars (TGGs) are a formally founded,  bidirectional model transformation language shown by numerous case studies to be quite promising and successful.  Although TGGs provide adequate support for structural aspects via object  patterns in TGG rules, support for handling complex relationships between different attributes is still missing in current implementations.  For certain applications, such as bidirectional model-to-text transformations, being able to manipulate attributes via string manipulation or arithmetic operations in TGG rules is vital.  Our contribution in this paper is to formalize a TGG extension that provides a means for complex attribute manipulation in TGG rules.  Our extension is compatible with the existing TGG formalization, and retains the "single specification'' philosophy of TGGs

    A Solution to the Flowgraphs Case Study using Triple Graph Grammars and eMoflon

    Full text link
    After 20 years of Triple Graph Grammars (TGGs) and numerous actively maintained implementations, there is now a need for challenging examples and success stories to show that TGGs can be used for real-world bidirectional model transformations. Our primary goal in recent years has been to increase the expressiveness of TGGs by providing a set of pragmatic features that allow a controlled fallback to programmed graph transformations and Java. Based on the Flowgraphs case study of the Transformation Tool Contest (TTC 2013), we present (i) attribute constraints used to express complex bidirectional attribute manipulation, (ii) binding expressions for specifying arbitrary context relationships, and (iii) post-processing methods as a black box extension for TGG rules. In each case, we discuss the enabled trade-off between guaranteed formal properties and expressiveness. Our solution, implemented with our metamodelling and model transformation tool eMoflon (www.emoflon.org), is available as a virtual machine hosted on Share.Comment: In Proceedings TTC 2013, arXiv:1311.753

    Avoiding Unnecessary Information Loss: Correct and Efficient Model Synchronization Based on Triple Graph Grammars

    Full text link
    Model synchronization, i.e., the task of restoring consistency between two interrelated models after a model change, is a challenging task. Triple Graph Grammars (TGGs) specify model consistency by means of rules that describe how to create consistent pairs of models. These rules can be used to automatically derive further rules, which describe how to propagate changes from one model to the other or how to change one model in such a way that propagation is guaranteed to be possible. Restricting model synchronization to these derived rules, however, may lead to unnecessary deletion and recreation of model elements during change propagation. This is inefficient and may cause unnecessary information loss, i.e., when deleted elements contain information that is not represented in the second model, this information cannot be recovered easily. Short-cut rules have recently been developed to avoid unnecessary information loss by reusing existing model elements. In this paper, we show how to automatically derive (short-cut) repair rules from short-cut rules to propagate changes such that information loss is avoided and model synchronization is accelerated. The key ingredients of our rule-based model synchronization process are these repair rules and an incremental pattern matcher informing about suitable applications of them. We prove the termination and the correctness of this synchronization process and discuss its completeness. As a proof of concept, we have implemented this synchronization process in eMoflon, a state-of-the-art model transformation tool with inherent support of bidirectionality. Our evaluation shows that repair processes based on (short-cut) repair rules have considerably decreased information loss and improved performance compared to former model synchronization processes based on TGGs.Comment: 33 pages, 20 figures, 3 table

    Attribute Handling for Bidirectional Model Transformations: The Triple Graph Grammar Case

    Get PDF
    When describing bidirectional model transformations in a declarative (relational) way, the relation between structures in source and target models is specified. But not only structural correspondences between source and target models need to be described. Another important aspect is the specification of the relation between attribute values of elements in source and target models. However, most existing approaches either do not allow such a relational kind of specification for attributes or allow it only in a restricted way.We consider the challenge of bridging the gap between a flexible declarative attribute specification and its operationalization for the triple graph grammar (TGG) specification technique as an important representative for describing bidirectional model transformations in a relational way. First, we present a formal way to specify attributes in TGG rules in a purely declarative (relational) way. Then, we give an overview of characteristic barriers that bidirectional model transformation tool developers are confronted with when operationalizing relational attribute constraints for different TGG application scenarios. Moreover, we present pragmatic solutions to overcome the operationalization barriers for different TGG application scenarios in our own TGG implementation

    Bidirectional Model Transformations in QVT: Semantic Issues and Open Questions

    Get PDF
    (QVT) standard as applied to the specification of bidirectional transformations between models. We discuss what is meant by bidirectional transformations, and the model-driven development scenarios in which they are needed. We analyse the fundamental requirements on tools which support such transformations, and discuss some semantic issues which arise. We argue that a considerable amount of basic research is needed before suitable tools will be fully realisable, and suggest directions for this future research

    20 years of triple graph grammars: A roadmap for future research

    Get PDF
    Triple graph grammars (TGGs) provide a declarative, rule-based means of specifying binary consistency relationships between different types of graphs. Over the last 20 years, TGGs have been applied successfully in a range of application scenarios including: model generation, conformance testing, bidirectional model transformation, and incremental model synchronisation. In this paper, we review the progress made in TGG research up until now by exploring multiple research dimensions, including both the current frontiers of TGG research as well as important future challenges. Our aim is to provide a roadmap for the coming years of TGG research by stating clearly what we regard as adequately researched, and what we view as still unexplored potential

    Controlling Reuse in Pattern-Based Model-to-Model Transformations

    Get PDF
    Model-to-model transformation is a central activity in Model-Driven Engineering that consists of transforming models from a source to a target language. Pattern-based model-to-model transformation is our approach for specifying transformations in a declarative, relational and formal style. The approach relies on patterns describing allowed or forbidden relations between two models. These patterns are compiled into operational mechanisms to perform forward and backward transformations. Inspired by QVT-Relations, in this paper we incorporate into our framework the so-called check-before-enforce semantics, which checks the existence of suitable elements before creating them (i.e. it promotes reuse). Moreover, we enable the use of keys in order to describe when two elements are considered equal. The presented techniques are illustrated with a bidirectional transformation between Web Services Description Language and Enterprise Java Beans models.Work partially supported by the Spanish Ministry of Science and Innovation, with projects METEORIC (TIN2008-02081) and FORMALISM (TIN2007-66523), and the R&D program of the Community of Madrid (S2009/TIC-1650, project “e-Madrid”). Moreover, part of this work was done during a post-doctoral stay of the first author at the University of York, and sabbatical leaves of the second and third authors to the University of York and TU Berlin respectively, all with financial support from the Spanish Ministry of Science and Innovation (grant refs. JC2009-00015, PR2009-0019 and PR2008-0185).Publicad

    Inter-Modelling with Graphical Constraints: Foundations and Applications

    Get PDF
    Model-Driven Engineering (MDE) promotes an active use of models in the different phases of the development, so that the construction of systems usually involves a number of models expressed in different languages and levels of abstraction; therefore, there is the constant need to compare, generate and update models and their relations. We call inter-modelling to the activity of building models that describe how modelling languages should be related. This includes many MDE activities like the specification of model-to-model transformations, the definition of model matching and traceability constraints, and the development of inter-model consistency mantainers. While most approaches build different operational programs to handle each activity separately, we propose using a high-level specification language called PaMoMo to specify inter-models in a declarative, graphical, bidirectional way. This specification can be compiled into operational mechanisms to solve different inter-modelling activities like transformation, model comparison and traceability support. Other usage scenarios for PaMoMo are the specification of transformation contracts and the automated testing of transformations

    Implicit Incremental Model Analyses and Transformations

    Get PDF
    When models of a system change, analyses based on them have to be reevaluated in order for the results to stay meaningful. In many cases, the time to get updated analysis results is critical. This thesis proposes multiple, combinable approaches and a new formalism based on category theory for implicitly incremental model analyses and transformations. The advantages of the implementation are validated using seven case studies, partially drawn from the Transformation Tool Contest (TTC)

    Formal Foundations for Information-Preserving Model Synchronization Processes Based on Triple Graph Grammars

    Get PDF
    Zwischen verschiedenen Artefakten, die Informationen teilen, wieder Konsistenz herzustellen, nachdem eines von ihnen geĂ€ndert wurde, ist ein wichtiges Problem, das in verschiedenen Bereichen der Informatik auftaucht. Mit dieser Dissertation legen wir eine Lösung fĂŒr das grundlegende Modellsynchronisationsproblem vor. Bei diesem Problem ist ein Paar solcher Artefakte (Modelle) gegeben, von denen eines geĂ€ndert wurde; Aufgabe ist die Wiederherstellung der Konsistenz. Tripelgraphgrammatiken (TGGs) sind ein etablierter und geeigneter Formalismus, um dieses und verwandte Probleme anzugehen. Da sie auf der algebraischen Theorie der Graphtransformation und dem (Double-)Pushout Zugang zu Ersetzungssystemen basieren, sind sie besonders geeignet, um Lösungen zu entwickeln, deren Eigenschaften formal bewiesen werden können. Doch obwohl TGG-basierte AnsĂ€tze etabliert sind, leiden viele von ihnen unter dem Problem des Informationsverlustes. Wenn ein Modell geĂ€ndert wurde, können wĂ€hrend eines Synchronisationsprozesses Informationen verloren gehen, die nur im zweiten Modell vorliegen. Das liegt daran, dass solche Synchronisationsprozesse darauf zurĂŒckfallen Konsistenz dadurch wiederherzustellen, dass sie das geĂ€nderte Modell (bzw. große Teile von ihm) neu ĂŒbersetzen. Wir schlagen einen TGG-basierten Ansatz vor, der fortgeschrittene Features von TGGs unterstĂŒtzt (Attribute und negative Constraints), durchgĂ€ngig formalisiert ist, implementiert und inkrementell in dem Sinne ist, dass er den Informationsverlust im Vergleich mit vorherigen AnsĂ€tzen drastisch reduziert. Bisher gibt es keinen TGG-basierten Ansatz mit vergleichbaren Eigenschaften. Zentraler Beitrag dieser Dissertation ist es, diesen Ansatz formal auszuarbeiten und seine wesentlichen Eigenschaften, nĂ€mlich Korrektheit, VollstĂ€ndigkeit und Termination, zu beweisen. Die entscheidende neue Idee unseres Ansatzes ist es, Reparaturregeln anzuwenden. Dies sind spezielle Regeln, die es erlauben, Änderungen an einem Modell direkt zu propagieren anstatt auf NeuĂŒbersetzung zurĂŒckzugreifen. Um diese Reparaturregeln erstellen und anwenden zu können, entwickeln wir grundlegende BeitrĂ€ge zur Theorie der algebraischen Graphtransformation. ZunĂ€chst entwickeln wir eine neue Art der sequentiellen Komposition von Regeln. Im Gegensatz zur gewöhnlichen Komposition, die zu Regeln fĂŒhrt, die Elemente löschen und dann wieder neu erzeugen, können wir Regeln herleiten, die solche Elemente stattdessen bewahren. Technisch gesehen findet der Synchronisationsprozess, den wir entwickeln, außerdem in der Kategorie der partiellen Tripelgraphen statt und nicht in der der normalen Tripelgraphen. Daher mĂŒssen wir sicherstellen, dass die fĂŒr Double-Pushout-Ersetzungssysteme ausgearbeitete Theorie immer noch gĂŒltig ist. Dazu entwickeln wir eine (kategorientheoretische) Konstruktion neuer Kategorien aus gegebenen und zeigen, dass (i) diese Konstruktion die Axiome erhĂ€lt, die nötig sind, um die Theorie fĂŒr Double-Pushout-Ersetzungssysteme zu entwickeln, und (ii) partielle Tripelgraphen als eine solche Kategorie konstruiert werden können. Zusammen ermöglichen diese beiden grundsĂ€tzlichen BeitrĂ€ge es uns, unsere Lösung fĂŒr das grundlegende Modellsynchronisationsproblem vollstĂ€ndig formal auszuarbeiten und ihre zentralen Eigenschaften zu beweisen.Restoring consistency between different information-sharing artifacts after one of them has been changed is an important problem that arises in several areas of computer science. In this thesis, we provide a solution to the basic model synchronization problem. There, a pair of such artifacts (models), one of which has been changed, is given and consistency shall be restored. Triple graph grammars (TGGs) are an established and suitable formalism to address this and related problems. Being based on the algebraic theory of graph transformation and (double-)pushout rewriting, they are especially suited to develop solutions whose properties can be formally proven. Despite being established, many TGG-based solutions do not satisfactorily deal with the problem of information loss. When one model is changed, in the process of restoring consistency such solutions may lose information that is only present in the second model because the synchronization process resorts to restoring consistency by re-translating (large parts of) the updated model. We introduce a TGG-based approach that supports advanced features of TGGs (attributes and negative constraints), is comprehensively formalized, implemented, and is incremental in the sense that it drastically reduces the amount of information loss compared to former approaches. Up to now, a TGG-based approach with these characteristics is not available. The central contribution of this thesis is to formally develop that approach and to prove its essential properties, namely correctness, completeness, and termination. The crucial new idea in our approach is the use of repair rules, which are special rules that allow one to directly propagate changes from one model to the other instead of resorting to re-translation. To be able to construct and apply these repair rules, we contribute more fundamentally to the theory of algebraic graph transformation. First, we develop a new kind of sequential rule composition. Whereas the conventional composition of rules leads to rules that delete and re-create elements, we can compute rules that preserve such elements instead. Furthermore, technically the setting in which the synchronization process we develop takes place is the category of partial triple graphs and not the one of ordinary triple graphs. Hence, we have to ensure that the elaborate theory of double-pushout rewriting still applies. Therefore, we develop a (category-theoretic) construction of new categories from given ones and show that (i) this construction preserves the axioms that are necessary to develop the theory of double-pushout rewriting and (ii) partial triple graphs can be constructed as such a category. Together, those two more fundamental contributions enable us to develop our solution to the basic model synchronization problem in a fully formal manner and to prove its central properties
    • 

    corecore