3,511 research outputs found

    An analogue of Ryser's Theorem for partial Sudoku squares

    Full text link
    In 1956 Ryser gave a necessary and sufficient condition for a partial latin rectangle to be completable to a latin square. In 1990 Hilton and Johnson showed that Ryser's condition could be reformulated in terms of Hall's Condition for partial latin squares. Thus Ryser's Theorem can be interpreted as saying that any partial latin rectangle RR can be completed if and only if RR satisfies Hall's Condition for partial latin squares. We define Hall's Condition for partial Sudoku squares and show that Hall's Condition for partial Sudoku squares gives a criterion for the completion of partial Sudoku rectangles that is both necessary and sufficient. In the particular case where n=pqn=pq, prp|r, qsq|s, the result is especially simple, as we show that any r×sr \times s partial (p,q)(p,q)-Sudoku rectangle can be completed (no further condition being necessary).Comment: 19 pages, 10 figure

    Maximal partial Latin cubes

    Get PDF
    We prove that each maximal partial Latin cube must have more than 29.289% of its cells filled and show by construction that this is a nearly tight bound. We also prove upper and lower bounds on the number of cells containing a fixed symbol in maximal partial Latin cubes and hypercubes, and we use these bounds to determine for small orders n the numbers k for which there exists a maximal partial Latin cube of order n with exactly k entries. Finally, we prove that maximal partial Latin cubes of order n exist of each size from approximately half-full (n3/2 for even n ≥ 10 and (n3 + n)/2 for odd n ≥21) to completely full, except for when either precisely 1 or 2 cells are empty

    Multi-latin squares

    Get PDF
    A multi-latin square of order nn and index kk is an n×nn\times n array of multisets, each of cardinality kk, such that each symbol from a fixed set of size nn occurs kk times in each row and kk times in each column. A multi-latin square of index kk is also referred to as a kk-latin square. A 11-latin square is equivalent to a latin square, so a multi-latin square can be thought of as a generalization of a latin square. In this note we show that any partially filled-in kk-latin square of order mm embeds in a kk-latin square of order nn, for each n2mn\geq 2m, thus generalizing Evans' Theorem. Exploiting this result, we show that there exist non-separable kk-latin squares of order nn for each nk+2n\geq k+2. We also show that for each n1n\geq 1, there exists some finite value g(n)g(n) such that for all kg(n)k\geq g(n), every kk-latin square of order nn is separable. We discuss the connection between kk-latin squares and related combinatorial objects such as orthogonal arrays, latin parallelepipeds, semi-latin squares and kk-latin trades. We also enumerate and classify kk-latin squares of small orders.Comment: Final version as sent to journa

    Completing some Partial Latin Squares

    Get PDF
    AbstractWe show that any partial 3 r× 3 r Latin square whose filled cells lie in two disjoint r×r sub-squares can be completed. We do this by proving the more general result that any partial 3 r by 3 r Latin square, with filled cells in the top left 2r× 2 r square, for which there is a pairing of the columns so that in each row there is a filled cell in at most one of each matched pair of columns, can be completed if and only if there is some way to fill the cells of the top left 2 r× 2 r square
    corecore