1,362 research outputs found

    Completing Any Low-rank Matrix, Provably

    Full text link
    Matrix completion, i.e., the exact and provable recovery of a low-rank matrix from a small subset of its elements, is currently only known to be possible if the matrix satisfies a restrictive structural constraint---known as {\em incoherence}---on its row and column spaces. In these cases, the subset of elements is sampled uniformly at random. In this paper, we show that {\em any} rank-r r n n-by-n n matrix can be exactly recovered from as few as O(nrlog⁑2n)O(nr \log^2 n) randomly chosen elements, provided this random choice is made according to a {\em specific biased distribution}: the probability of any element being sampled should be proportional to the sum of the leverage scores of the corresponding row, and column. Perhaps equally important, we show that this specific form of sampling is nearly necessary, in a natural precise sense; this implies that other perhaps more intuitive sampling schemes fail. We further establish three ways to use the above result for the setting when leverage scores are not known \textit{a priori}: (a) a sampling strategy for the case when only one of the row or column spaces are incoherent, (b) a two-phase sampling procedure for general matrices that first samples to estimate leverage scores followed by sampling for exact recovery, and (c) an analysis showing the advantages of weighted nuclear/trace-norm minimization over the vanilla un-weighted formulation for the case of non-uniform sampling.Comment: Added a new necessary condition(Theorem 6) and a result on completion of row coherent matrices(Corollary 4). Partial results appeared in the International Conference on Machine Learning 2014, under the title 'Coherent Matrix Completion'. (34 pages, 4 figures

    Static and Dynamic Robust PCA and Matrix Completion: A Review

    Full text link
    Principal Components Analysis (PCA) is one of the most widely used dimension reduction techniques. Robust PCA (RPCA) refers to the problem of PCA when the data may be corrupted by outliers. Recent work by Cand{\`e}s, Wright, Li, and Ma defined RPCA as a problem of decomposing a given data matrix into the sum of a low-rank matrix (true data) and a sparse matrix (outliers). The column space of the low-rank matrix then gives the PCA solution. This simple definition has lead to a large amount of interesting new work on provably correct, fast, and practical solutions to RPCA. More recently, the dynamic (time-varying) version of the RPCA problem has been studied and a series of provably correct, fast, and memory efficient tracking solutions have been proposed. Dynamic RPCA (or robust subspace tracking) is the problem of tracking data lying in a (slowly) changing subspace while being robust to sparse outliers. This article provides an exhaustive review of the last decade of literature on RPCA and its dynamic counterpart (robust subspace tracking), along with describing their theoretical guarantees, discussing the pros and cons of various approaches, and providing empirical comparisons of performance and speed. A brief overview of the (low-rank) matrix completion literature is also provided (the focus is on works not discussed in other recent reviews). This refers to the problem of completing a low-rank matrix when only a subset of its entries are observed. It can be interpreted as a simpler special case of RPCA in which the indices of the outlier corrupted entries are known.Comment: To appear in Proceedings of the IEEE, Special Issue on Rethinking PCA for Modern Datasets. arXiv admin note: text overlap with arXiv:1711.0949

    Provably Correct Algorithms for Matrix Column Subset Selection with Selectively Sampled Data

    Full text link
    We consider the problem of matrix column subset selection, which selects a subset of columns from an input matrix such that the input can be well approximated by the span of the selected columns. Column subset selection has been applied to numerous real-world data applications such as population genetics summarization, electronic circuits testing and recommendation systems. In many applications the complete data matrix is unavailable and one needs to select representative columns by inspecting only a small portion of the input matrix. In this paper we propose the first provably correct column subset selection algorithms for partially observed data matrices. Our proposed algorithms exhibit different merits and limitations in terms of statistical accuracy, computational efficiency, sample complexity and sampling schemes, which provides a nice exploration of the tradeoff between these desired properties for column subset selection. The proposed methods employ the idea of feedback driven sampling and are inspired by several sampling schemes previously introduced for low-rank matrix approximation tasks (Drineas et al., 2008; Frieze et al., 2004; Deshpande and Vempala, 2006; Krishnamurthy and Singh, 2014). Our analysis shows that, under the assumption that the input data matrix has incoherent rows but possibly coherent columns, all algorithms provably converge to the best low-rank approximation of the original data as number of selected columns increases. Furthermore, two of the proposed algorithms enjoy a relative error bound, which is preferred for column subset selection and matrix approximation purposes. We also demonstrate through both theoretical and empirical analysis the power of feedback driven sampling compared to uniform random sampling on input matrices with highly correlated columns.Comment: 42 pages. Accepted to Journal of Machine Learning Researc

    Gradient Descent with Early Stopping is Provably Robust to Label Noise for Overparameterized Neural Networks

    Full text link
    Modern neural networks are typically trained in an over-parameterized regime where the parameters of the model far exceed the size of the training data. Such neural networks in principle have the capacity to (over)fit any set of labels including pure noise. Despite this, somewhat paradoxically, neural network models trained via first-order methods continue to predict well on yet unseen test data. This paper takes a step towards demystifying this phenomena. Under a rich dataset model, we show that gradient descent is provably robust to noise/corruption on a constant fraction of the labels despite overparameterization. In particular, we prove that: (i) In the first few iterations where the updates are still in the vicinity of the initialization gradient descent only fits to the correct labels essentially ignoring the noisy labels. (ii) to start to overfit to the noisy labels network must stray rather far from from the initialization which can only occur after many more iterations. Together, these results show that gradient descent with early stopping is provably robust to label noise and shed light on the empirical robustness of deep networks as well as commonly adopted heuristics to prevent overfitting

    Complete Dictionary Recovery over the Sphere II: Recovery by Riemannian Trust-region Method

    Full text link
    We consider the problem of recovering a complete (i.e., square and invertible) matrix A0\mathbf A_0, from Y∈RnΓ—p\mathbf Y \in \mathbb{R}^{n \times p} with Y=A0X0\mathbf Y = \mathbf A_0 \mathbf X_0, provided X0\mathbf X_0 is sufficiently sparse. This recovery problem is central to theoretical understanding of dictionary learning, which seeks a sparse representation for a collection of input signals and finds numerous applications in modern signal processing and machine learning. We give the first efficient algorithm that provably recovers A0\mathbf A_0 when X0\mathbf X_0 has O(n)O(n) nonzeros per column, under suitable probability model for X0\mathbf X_0. Our algorithmic pipeline centers around solving a certain nonconvex optimization problem with a spherical constraint, and hence is naturally phrased in the language of manifold optimization. In a companion paper (arXiv:1511.03607), we have showed that with high probability our nonconvex formulation has no "spurious" local minimizers and around any saddle point the objective function has a negative directional curvature. In this paper, we take advantage of the particular geometric structure, and describe a Riemannian trust region algorithm that provably converges to a local minimizer with from arbitrary initializations. Such minimizers give excellent approximations to rows of X0\mathbf X_0. The rows are then recovered by linear programming rounding and deflation.Comment: The second of two papers based on the report arXiv:1504.06785. Accepted by IEEE Transaction on Information Theory; revised according to the reviewers' comment

    Rank/Norm Regularization with Closed-Form Solutions: Application to Subspace Clustering

    Full text link
    When data is sampled from an unknown subspace, principal component analysis (PCA) provides an effective way to estimate the subspace and hence reduce the dimension of the data. At the heart of PCA is the Eckart-Young-Mirsky theorem, which characterizes the best rank k approximation of a matrix. In this paper, we prove a generalization of the Eckart-Young-Mirsky theorem under all unitarily invariant norms. Using this result, we obtain closed-form solutions for a set of rank/norm regularized problems, and derive closed-form solutions for a general class of subspace clustering problems (where data is modelled by unions of unknown subspaces). From these results we obtain new theoretical insights and promising experimental results.Comment: 11 pages, 1 figure, appeared in UAI 2011. One footnote corrected and appendix adde

    Log-Normal Matrix Completion for Large Scale Link Prediction

    Full text link
    The ubiquitous proliferation of online social networks has led to the widescale emergence of relational graphs expressing unique patterns in link formation and descriptive user node features. Matrix Factorization and Completion have become popular methods for Link Prediction due to the low rank nature of mutual node friendship information, and the availability of parallel computer architectures for rapid matrix processing. Current Link Prediction literature has demonstrated vast performance improvement through the utilization of sparsity in addition to the low rank matrix assumption. However, the majority of research has introduced sparsity through the limited L1 or Frobenius norms, instead of considering the more detailed distributions which led to the graph formation and relationship evolution. In particular, social networks have been found to express either Pareto, or more recently discovered, Log Normal distributions. Employing the convexity-inducing Lovasz Extension, we demonstrate how incorporating specific degree distribution information can lead to large scale improvements in Matrix Completion based Link prediction. We introduce Log-Normal Matrix Completion (LNMC), and solve the complex optimization problem by employing Alternating Direction Method of Multipliers. Using data from three popular social networks, our experiments yield up to 5% AUC increase over top-performing non-structured sparsity based methods.Comment: 6 page

    Overparameterized Nonlinear Learning: Gradient Descent Takes the Shortest Path?

    Full text link
    Many modern learning tasks involve fitting nonlinear models to data which are trained in an overparameterized regime where the parameters of the model exceed the size of the training dataset. Due to this overparameterization, the training loss may have infinitely many global minima and it is critical to understand the properties of the solutions found by first-order optimization schemes such as (stochastic) gradient descent starting from different initializations. In this paper we demonstrate that when the loss has certain properties over a minimally small neighborhood of the initial point, first order methods such as (stochastic) gradient descent have a few intriguing properties: (1) the iterates converge at a geometric rate to a global optima even when the loss is nonconvex, (2) among all global optima of the loss the iterates converge to one with a near minimal distance to the initial point, (3) the iterates take a near direct route from the initial point to this global optima. As part of our proof technique, we introduce a new potential function which captures the precise tradeoff between the loss function and the distance to the initial point as the iterations progress. For Stochastic Gradient Descent (SGD), we develop novel martingale techniques that guarantee SGD never leaves a small neighborhood of the initialization, even with rather large learning rates. We demonstrate the utility of our general theory for a variety of problem domains spanning low-rank matrix recovery to neural network training. Underlying our analysis are novel insights that may have implications for training and generalization of more sophisticated learning problems including those involving deep neural network architectures

    Recursive Sampling for the Nystr\"om Method

    Full text link
    We give the first algorithm for kernel Nystr\"om approximation that runs in *linear time in the number of training points* and is provably accurate for all kernel matrices, without dependence on regularity or incoherence conditions. The algorithm projects the kernel onto a set of ss landmark points sampled by their *ridge leverage scores*, requiring just O(ns)O(ns) kernel evaluations and O(ns2)O(ns^2) additional runtime. While leverage score sampling has long been known to give strong theoretical guarantees for Nystr\"om approximation, by employing a fast recursive sampling scheme, our algorithm is the first to make the approach scalable. Empirically we show that it finds more accurate, lower rank kernel approximations in less time than popular techniques such as uniformly sampled Nystr\"om approximation and the random Fourier features method.Comment: To appear, NIPS 201

    Finding a sparse vector in a subspace: Linear sparsity using alternating directions

    Full text link
    Is it possible to find the sparsest vector (direction) in a generic subspace SβŠ†Rp\mathcal{S} \subseteq \mathbb{R}^p with dim(S)=n<p\mathrm{dim}(\mathcal{S})= n < p? This problem can be considered a homogeneous variant of the sparse recovery problem, and finds connections to sparse dictionary learning, sparse PCA, and many other problems in signal processing and machine learning. In this paper, we focus on a **planted sparse model** for the subspace: the target sparse vector is embedded in an otherwise random subspace. Simple convex heuristics for this planted recovery problem provably break down when the fraction of nonzero entries in the target sparse vector substantially exceeds O(1/n)O(1/\sqrt{n}). In contrast, we exhibit a relatively simple nonconvex approach based on alternating directions, which provably succeeds even when the fraction of nonzero entries is Ξ©(1)\Omega(1). To the best of our knowledge, this is the first practical algorithm to achieve linear scaling under the planted sparse model. Empirically, our proposed algorithm also succeeds in more challenging data models, e.g., sparse dictionary learning.Comment: Accepted by IEEE Trans. Information Theory. The paper has been revised by the reviewers' comments. The proofs have been streamline
    • …
    corecore