9 research outputs found

    Finite biprefix sets of paths in a graph

    Get PDF
    AbstractThe main results of the combinatorial theory of maximal biprefix codes of words (CĂ©sari, Perrin, SchĂŒtzenberger) are extended to the codes of paths in a graph in this paper: degree and decoding of double-infinite paths, finiteness of codes of a given degree, the CĂ©sari-SchĂŒtzenberger algorithm, derivation and integration of codes will be discussed

    On groups of units of special and one-relator inverse monoids

    Get PDF
    Funding: This research of R. D. Gray was supported by the Engineering and Physical Sciences Research Council projects EP/N033353/1 “Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem”, and EP/V032003/1 ‘’Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups”.We investigate the groups of units of one-relator and special inverse monoids. These are inverse monoids which are defined by presentations, where all the defining relations are of the form r=1. We develop new approaches for finding presentations for the group of units of a special inverse monoid, and apply these methods to give conditions under which the group admits a presentation with the same number of defining relations as the monoid. In particular, our results give sufficient conditions for the group of units of a one-relator inverse monoid to be a one-relator group. When these conditions are satisfied, these results give inverse semigroup theoretic analogues of classical results of Adjan for one-relator monoids, and Makanin for special monoids. In contrast, we show that in general these classical results do not hold for one-relator and special inverse monoids. In particular, we show that there exists a one-relator special inverse monoid whose group of units is not a one-relator group (with respect to any generating set), and we show that there exists a finitely presented special inverse monoid whose group of units is not finitely presented.Publisher PDFPeer reviewe

    Master index volumes 31–40

    Get PDF

    A note on the factorization conjecture

    Full text link
    We give partial results on the factorization conjecture on codes proposed by Schutzenberger. We consider finite maximal codes C over the alphabet A = {a, b} with C \cap a^* = a^p, for a prime number p. Let P, S in Z , with S = S_0 + S_1, supp(S_0) \subset a^* and supp(S_1) \subset a^*b supp(S_0). We prove that if (P,S) is a factorization for C then (P,S) is positive, that is P,S have coefficients 0,1, and we characterize the structure of these codes. As a consequence, we prove that if C is a finite maximal code such that each word in C has at most 4 occurrences of b's and a^p is in C, then each factorization for C is a positive factorization. We also discuss the structure of these codes. The obtained results show once again relations between (positive) factorizations and factorizations of cyclic groups

    The word problem and combinatorial methods for groups and semigroups

    Get PDF
    The subject matter of this thesis is combinatorial semigroup theory. It includes material, in no particular order, from combinatorial and geometric group theory, formal language theory, theoretical computer science, the history of mathematics, formal logic, model theory, graph theory, and decidability theory. In Chapter 1, we will give an overview of the mathematical background required to state the results of the remaining chapters. The only originality therein lies in the exposition of special monoids presented in §1.3, which uni.es the approaches by several authors. In Chapter 2, we introduce some general algebraic and language-theoretic constructions which will be useful in subsequent chapters. As a corollary of these general methods, we recover and generalise a recent result by Brough, Cain & Pfei.er that the class of monoids with context-free word problem is closed under taking free products. In Chapter 3, we study language-theoretic and algebraic properties of special monoids, and completely classify this theory in terms of the group of units. As a result, we generalise the Muller-Schupp theorem to special monoids, and answer a question posed by Zhang in 1992. In Chapter 4, we give a similar treatment to weakly compressible monoids, and characterise their language-theoretic properties. As a corollary, we deduce many new results for one-relation monoids, including solving the rational subset membership problem for many such monoids. We also prove, among many other results, that it is decidable whether a one-relation monoid containing a non-trivial idempotent has context-free word problem. In Chapter 5, we study context-free graphs, and connect the algebraic theory of special monoids with the geometric behaviour of their Cayley graphs. This generalises the geometric aspects of the Muller-Schupp theorem for groups to special monoids. We study the growth rate of special monoids, and prove that a special monoid of intermediate growth is a group

    The word problem for one-relation monoids: a survey

    Get PDF
    This survey is intended to provide an overview of one of the oldest and most celebrated open problems in combinatorial algebra: the word problem for one-relation monoids. We provide a history of the problem starting in 1914, and give a detailed overview of the proofs of central results, especially those due to Adian and his student Oganesian. After showing how to reduce the problem to the left cancellative case, the second half of the survey focuses on various methods for solving partial cases in this family. We finish with some modern and very recent results pertaining to this problem, including a link to the Collatz conjecture. Along the way, we emphasise and address a number of incorrect and inaccurate statements that have appeared in the literature over the years. We also fill a gap in the proof of a theorem linking special inverse monoids to one-relation monoids, and slightly strengthen the statement of this theorem

    Subject Index Volumes 1–200

    Get PDF
    corecore