17,889 research outputs found

    Hardness of robust graph isomorphism, Lasserre gaps, and asymmetry of random graphs

    Full text link
    Building on work of Cai, F\"urer, and Immerman \cite{CFI92}, we show two hardness results for the Graph Isomorphism problem. First, we show that there are pairs of nonisomorphic nn-vertex graphs GG and HH such that any sum-of-squares (SOS) proof of nonisomorphism requires degree Ω(n)\Omega(n). In other words, we show an Ω(n)\Omega(n)-round integrality gap for the Lasserre SDP relaxation. In fact, we show this for pairs GG and HH which are not even (1−10−14)(1-10^{-14})-isomorphic. (Here we say that two nn-vertex, mm-edge graphs GG and HH are α\alpha-isomorphic if there is a bijection between their vertices which preserves at least αm\alpha m edges.) Our second result is that under the {\sc R3XOR} Hypothesis \cite{Fei02} (and also any of a class of hypotheses which generalize the {\sc R3XOR} Hypothesis), the \emph{robust} Graph Isomorphism problem is hard. I.e.\ for every ϵ>0\epsilon > 0, there is no efficient algorithm which can distinguish graph pairs which are (1−ϵ)(1-\epsilon)-isomorphic from pairs which are not even (1−ϵ0)(1-\epsilon_0)-isomorphic for some universal constant ϵ0\epsilon_0. Along the way we prove a robust asymmetry result for random graphs and hypergraphs which may be of independent interest

    Diffusion determines the recurrent graph

    Full text link
    We consider diffusion on discrete measure spaces as encoded by Markovian semigroups arising from weighted graphs. We study whether the graph is uniquely determined if the diffusion is given up to order isomorphism. If the graph is recurrent then the complete graph structure and the measure space are determined (up to an overall scaling). As shown by counterexamples this result is optimal. Without the recurrence assumption, the graph still turns out to be determined in the case of normalized diffusion on graphs with standard weights and in the case of arbitrary graphs over spaces in which each point has the same mass. These investigations provide discrete counterparts to studies of diffusion on Euclidean domains and manifolds initiated by Arendt and continued by Arendt/Biegert/ter Elst and Arendt/ter Elst. A crucial step in our considerations shows that order isomorphisms are actually unitary maps (up to a scaling) in our context.Comment: 30 page

    Canonizing Graphs of Bounded Tree Width in Logspace

    Get PDF
    Graph canonization is the problem of computing a unique representative, a canon, from the isomorphism class of a given graph. This implies that two graphs are isomorphic exactly if their canons are equal. We show that graphs of bounded tree width can be canonized by logarithmic-space (logspace) algorithms. This implies that the isomorphism problem for graphs of bounded tree width can be decided in logspace. In the light of isomorphism for trees being hard for the complexity class logspace, this makes the ubiquitous class of graphs of bounded tree width one of the few classes of graphs for which the complexity of the isomorphism problem has been exactly determined.Comment: 26 page
    • …
    corecore