250,783 research outputs found

    Learning Sets with Separating Kernels

    Full text link
    We consider the problem of learning a set from random samples. We show how relevant geometric and topological properties of a set can be studied analytically using concepts from the theory of reproducing kernel Hilbert spaces. A new kind of reproducing kernel, that we call separating kernel, plays a crucial role in our study and is analyzed in detail. We prove a new analytic characterization of the support of a distribution, that naturally leads to a family of provably consistent regularized learning algorithms and we discuss the stability of these methods with respect to random sampling. Numerical experiments show that the approach is competitive, and often better, than other state of the art techniques.Comment: final versio

    Separating path systems

    Full text link
    We study separating systems of the edges of a graph where each member of the separating system is a path. We conjecture that every nn-vertex graph admits a separating path system of size O(n)O(n) and prove this in certain interesting special cases. In particular, we establish this conjecture for random graphs and graphs with linear minimum degree. We also obtain tight bounds on the size of a minimal separating path system in the case of trees.Comment: 21 pages, fixed misprints, Journal of Combinatoric

    On Almost Automorphic Dynamics in Symbolic Lattices

    Get PDF
    1991 Mathematics Subject Classification. Primary Primary 37B10, 37A35, 43A60; Secondary 37B20, 54H20.We study the existence, structure, and topological entropy of almost automorphic arrays in symbolic lattice dynamical systems. In particular we show that almost automorphic arrays with arbitrarily large entropy are typical in symbolic lattice dynamical systems. Applications to pattern formation and spatial chaos in infinite dimensional lattice systems are considered, and the construction of chaotic almost automorphic signals is discussed.The first author was supported by a Max Kade Postdoctoral Fellowship (at Georgia Tech). The second author was partially supported by DFG grant Si 801 and CDSNS, Georgia Tech. The third author was partially supported by NSF Grant DMS-0204119

    Efficiently Decodable Non-Adaptive Threshold Group Testing

    Full text link
    We consider non-adaptive threshold group testing for identification of up to dd defective items in a set of nn items, where a test is positive if it contains at least 2ud2 \leq u \leq d defective items, and negative otherwise. The defective items can be identified using t=O((du)u(ddu)du(ulogdu+log1ϵ)d2logn)t = O \left( \left( \frac{d}{u} \right)^u \left( \frac{d}{d - u} \right)^{d-u} \left(u \log{\frac{d}{u}} + \log{\frac{1}{\epsilon}} \right) \cdot d^2 \log{n} \right) tests with probability at least 1ϵ1 - \epsilon for any ϵ>0\epsilon > 0 or t=O((du)u(ddu)dud3lognlognd)t = O \left( \left( \frac{d}{u} \right)^u \left( \frac{d}{d -u} \right)^{d - u} d^3 \log{n} \cdot \log{\frac{n}{d}} \right) tests with probability 1. The decoding time is t×poly(d2logn)t \times \mathrm{poly}(d^2 \log{n}). This result significantly improves the best known results for decoding non-adaptive threshold group testing: O(nlogn+nlog1ϵ)O(n\log{n} + n \log{\frac{1}{\epsilon}}) for probabilistic decoding, where ϵ>0\epsilon > 0, and O(nulogn)O(n^u \log{n}) for deterministic decoding

    Trajectory-Based Dynamic Map Labeling

    Full text link
    In this paper we introduce trajectory-based labeling, a new variant of dynamic map labeling, where a movement trajectory for the map viewport is given. We define a general labeling model and study the active range maximization problem in this model. The problem is NP-complete and W[1]-hard. In the restricted, yet practically relevant case that no more than k labels can be active at any time, we give polynomial-time algorithms. For the general case we present a practical ILP formulation with an experimental evaluation as well as approximation algorithms.Comment: 19 pages, 7 figures, extended version of a paper to appear at ISAAC 201

    Some New Bounds For Cover-Free Families Through Biclique Cover

    Get PDF
    An (r,w;d)(r,w;d) cover-free family (CFF)(CFF) is a family of subsets of a finite set such that the intersection of any rr members of the family contains at least dd elements that are not in the union of any other ww members. The minimum number of elements for which there exists an (r,w;d)CFF(r,w;d)-CFF with tt blocks is denoted by N((r,w;d),t)N((r,w;d),t). In this paper, we show that the value of N((r,w;d),t)N((r,w;d),t) is equal to the dd-biclique covering number of the bipartite graph It(r,w)I_t(r,w) whose vertices are all ww- and rr-subsets of a tt-element set, where a ww-subset is adjacent to an rr-subset if their intersection is empty. Next, we introduce some new bounds for N((r,w;d),t)N((r,w;d),t). For instance, we show that for rwr\geq w and r2r\geq 2 N((r,w;1),t)c(r+ww+1)+(r+w1w+1)+3(r+w4w2)logrlog(tw+1), N((r,w;1),t) \geq c{{r+w\choose w+1}+{r+w-1 \choose w+1}+ 3 {r+w-4 \choose w-2} \over \log r} \log (t-w+1), where cc is a constant satisfies the well-known bound N((r,1;1),t)cr2logrlogtN((r,1;1),t)\geq c\frac{r^2}{\log r}\log t. Also, we determine the exact value of N((r,w;d),t)N((r,w;d),t) for some values of dd. Finally, we show that N((1,1;d),4d1)=4d1N((1,1;d),4d-1)=4d-1 whenever there exists a Hadamard matrix of order 4d

    Convolution, Separation and Concurrency

    Full text link
    A notion of convolution is presented in the context of formal power series together with lifting constructions characterising algebras of such series, which usually are quantales. A number of examples underpin the universality of these constructions, the most prominent ones being separation logics, where convolution is separating conjunction in an assertion quantale; interval logics, where convolution is the chop operation; and stream interval functions, where convolution is used for analysing the trajectories of dynamical or real-time systems. A Hoare logic is constructed in a generic fashion on the power series quantale, which applies to each of these examples. In many cases, commutative notions of convolution have natural interpretations as concurrency operations.Comment: 39 page
    corecore