29,987 research outputs found

    Subspaces with a common complement in a Banach space

    Full text link
    We study the problem of the existence of a common algebraic complement for a pair of closed subspaces of a Banach space. We prove the following two characterizations: (1) The pairs of subspaces of a Banach space with a common complement coincide with those pairs which are isomorphic to a pair of graphs of bounded linear operators between two other Banach spaces. (2) The pairs of subspaces of a Banach space X with a common complement coincide with those pairs for which there exists an involution S on X exchanging the two subspaces, such that I+S is bounded from below on their union. Moreover we show that, in a separable Hilbert space, the only pairs of subspaces with a common complement are those which are either equivalently positioned or not completely asymptotic to one another. We also obtain characterizations for the existence of a common complement for subspaces with closed sum

    Matroid and Tutte-connectivity in infinite graphs

    Full text link
    We relate matroid connectivity to Tutte-connectivity in an infinite graph. Moreover, we show that the two cycle matroids, the finite-cycle matroid and the cycle matroid, in which also infinite cycles are taken into account, have the same connectivity function. As an application we re-prove that, also for infinite graphs, Tutte-connectivity is invariant under taking dual graphs.Comment: 11 page

    On the degree conjecture for separability of multipartite quantum states

    Full text link
    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein {\it et al.} [Phys. Rev. A \textbf{73}, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for {\it pure} multipartite quantum states, using the modified tensor product of graphs defined in [J. Phys. A: Math. Theor. \textbf{40}, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm we mean that the execution time of this algorithm increases as a polynomial in m,m, where mm is the number of parts of the quantum system. We give a counter-example to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.Comment: 17 pages, 3 figures. Comments are welcom

    The laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states

    Full text link
    We study entanglement properties of mixed density matrices obtained from combinatorial Laplacians. This is done by introducing the notion of the density matrix of a graph. We characterize the graphs with pure density matrices and show that the density matrix of a graph can be always written as a uniform mixture of pure density matrices of graphs. We consider the von Neumann entropy of these matrices and we characterize the graphs for which the minimum and maximum values are attained. We then discuss the problem of separability by pointing out that separability of density matrices of graphs does not always depend on the labelling of the vertices. We consider graphs with a tensor product structure and simple cases for which combinatorial properties are linked to the entanglement of the state. We calculate the concurrence of all graph on four vertices representing entangled states. It turns out that for some of these graphs the value of the concurrence is exactly fractional.Comment: 20 pages, 11 figure

    Energy as an Entanglement Witness for Quantum Many-Body Systems

    Get PDF
    We investigate quantum many-body systems where all low-energy states are entangled. As a tool for quantifying such systems, we introduce the concept of the entanglement gap, which is the difference in energy between the ground-state energy and the minimum energy that a separable (unentangled) state may attain. If the energy of the system lies within the entanglement gap, the state of the system is guaranteed to be entangled. We find Hamiltonians that have the largest possible entanglement gap; for a system consisting of two interacting spin-1/2 subsystems, the Heisenberg antiferromagnet is one such example. We also introduce a related concept, the entanglement-gap temperature: the temperature below which the thermal state is certainly entangled, as witnessed by its energy. We give an example of a bipartite Hamiltonian with an arbitrarily high entanglement-gap temperature for fixed total energy range. For bipartite spin lattices we prove a theorem demonstrating that the entanglement gap necessarily decreases as the coordination number is increased. We investigate frustrated lattices and quantum phase transitions as physical phenomena that affect the entanglement gap.Comment: 16 pages, 3 figures, published versio
    • …
    corecore