16,622 research outputs found

    Completely Independent Spanning Trees in Some Regular Graphs

    Full text link
    Let k≥2k\ge 2 be an integer and T1,…,TkT_1,\ldots, T_k be spanning trees of a graph GG. If for any pair of vertices (u,v)(u,v) of V(G)V(G), the paths from uu to vv in each TiT_i, 1≤i≤k1\le i\le k, do not contain common edges and common vertices, except the vertices uu and vv, then T1,…,TkT_1,\ldots, T_k are completely independent spanning trees in GG. For 2k2k-regular graphs which are 2k2k-connected, such as the Cartesian product of a complete graph of order 2k−12k-1 and a cycle and some Cartesian products of three cycles (for k=3k=3), the maximum number of completely independent spanning trees contained in these graphs is determined and it turns out that this maximum is not always kk

    Rigidity of Frameworks Supported on Surfaces

    Get PDF
    A theorem of Laman gives a combinatorial characterisation of the graphs that admit a realisation as a minimally rigid generic bar-joint framework in \bR^2. A more general theory is developed for frameworks in \bR^3 whose vertices are constrained to move on a two-dimensional smooth submanifold \M. Furthermore, when \M is a union of concentric spheres, or a union of parallel planes or a union of concentric cylinders, necessary and sufficient combinatorial conditions are obtained for the minimal rigidity of generic frameworks.Comment: Final version, 28 pages, with new figure

    Renormalization: an advanced overview

    Full text link
    We present several approaches to renormalization in QFT: the multi-scale analysis in perturbative renormalization, the functional methods \`a la Wetterich equation, and the loop-vertex expansion in non-perturbative renormalization. While each of these is quite well-established, they go beyond standard QFT textbook material, and may be little-known to specialists of each other approach. This review is aimed at bridging this gap.Comment: Review, 130 pages, 33 figures; v2: misprints corrected, refs. added, minor improvements; v3: some changes to sect. 5, refs. adde

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics
    • …
    corecore