55,442 research outputs found

    Constructive topology of bishop spaces

    Get PDF
    The theory of Bishop spaces (TBS) is so far the least developed approach to constructive topology with points. Bishop introduced function spaces, here called Bishop spaces, in 1967, without really exploring them, and in 2012 Bridges revived the subject. In this Thesis we develop TBS. Instead of having a common space-structure on a set X and R, where R denotes the set of constructive reals, that determines a posteriori which functions of type X -> R are continuous with respect to it, within TBS we start from a given class of "continuous" functions of type X -> R that determines a posteriori a space-structure on X. A Bishop space is a pair (X, F), where X is an inhabited set and F, a Bishop topology, or simply a topology, is a subset of all functions of type X -> R that includes the constant maps and it is closed under addition, uniform limits and composition with the Bishop continuous functions of type R -> R. The main motivation behind the introduction of Bishop spaces is that function-based concepts are more suitable to constructive study than set-based ones. Although a Bishop topology of functions F on X is a set of functions, the set-theoretic character of TBS is not that central as it seems. The reason for this is Bishop's inductive concept of the least topology generated by a given subbase. The definitional clauses of a Bishop space, seen as inductive rules, induce the corresponding induction principle. Hence, starting with a constructively acceptable subbase the generated topology is a constructively graspable set of functions exactly because of the corresponding principle. The function-theoretic character of TBS is also evident in the characterization of morphisms between Bishop spaces. The development of constructive point-function topology in this Thesis takes two directions. The first is a purely topological one. We introduce and study, among other notions, the quotient, the pointwise exponential, the dual, the Hausdorff, the completely regular, the 2-compact, the pair-compact and the 2-connected Bishop spaces. We prove, among other results, a Stone-Cech theorem, the Embedding lemma, a generalized version of the Tychonoff embedding theorem for completely regular Bishop spaces, the Gelfand-Kolmogoroff theorem for fixed and completely regular Bishop spaces, a Stone-Weierstrass theorem for pseudo-compact Bishop spaces and a Stone-Weierstrass theorem for pair-compact Bishop spaces. Of special importance is the notion of 2-compactness, a constructive function-theoretic notion of compactness for which we show that it generalizes the notion of a compact metric space. In the last chapter we initiate the basic homotopy theory of Bishop spaces. The other direction in the development of TBS is related to the analogy between a Bishop topology F, which is a ring and a lattice, and the ring of real-valued continuous functions C(X) on a topological space X. This analogy permits a direct "communication" between TBS and the theory of rings of continuous functions, although due to the classical set-theoretic character of C(X) this does not mean a direct translation of the latter to the former. We study the zero sets of a Bishop space and we prove the Urysohn lemma for them. We also develop the basic theory of embeddings of Bishop spaces in parallel to the basic classical theory of embeddings of rings of continuous functions and we show constructively the Urysohn extension theorem for Bishop spaces. The constructive development of topology in this Thesis is within Bishop's informal system of constructive mathematics BISH, inductive definitions with rules of countably many premises included

    Localic completion of uniform spaces

    Full text link
    We extend the notion of localic completion of generalised metric spaces by Steven Vickers to the setting of generalised uniform spaces. A generalised uniform space (gus) is a set X equipped with a family of generalised metrics on X, where a generalised metric on X is a map from the product of X to the upper reals satisfying zero self-distance law and triangle inequality. For a symmetric generalised uniform space, the localic completion lifts its generalised uniform structure to a point-free generalised uniform structure. This point-free structure induces a complete generalised uniform structure on the set of formal points of the localic completion that gives the standard completion of the original gus with Cauchy filters. We extend the localic completion to a full and faithful functor from the category of locally compact uniform spaces into that of overt locally compact completely regular formal topologies. Moreover, we give an elementary characterisation of the cover of the localic completion of a locally compact uniform space that simplifies the existing characterisation for metric spaces. These results generalise the corresponding results for metric spaces by Erik Palmgren. Furthermore, we show that the localic completion of a symmetric gus is equivalent to the point-free completion of the uniform formal topology associated with the gus. We work in Aczel's constructive set theory CZF with the Regular Extension Axiom. Some of our results also require Countable Choice.Comment: 39 page

    Integrals and Valuations

    Get PDF
    We construct a homeomorphism between the compact regular locale of integrals on a Riesz space and the locale of (valuations) on its spectrum. In fact, we construct two geometric theories and show that they are biinterpretable. The constructions are elementary and tightly connected to the Riesz space structure.Comment: Submitted for publication 15/05/0

    A Lindenstrauss theorem for some classes of multilinear mappings

    Full text link
    Under some natural hypotheses, we show that if a multilinear mapping belongs to some Banach multlinear ideal, then it can be approximated by multilinear mappings belonging to the same ideal whose Arens extensions simultaneously attain their norms. We also consider the class of symmetric multilinear mappings.Comment: 11 page

    Bounded holomorphic functions attaining their norms in the bidual

    Full text link
    Under certain hypotheses on the Banach space XX, we prove that the set of analytic functions in Au(X)\mathcal{A}_u(X) (the algebra of all holomorphic and uniformly continuous functions in the ball of XX) whose Aron-Berner extensions attain their norms, is dense in Au(X)\mathcal{A}_u(X). The result holds also for functions with values in a dual space or in a Banach space with the so-called property (β)(\beta). For this, we establish first a Lindenstrauss type theorem for continuous polynomials. We also present some counterexamples for the Bishop-Phelps theorem in the analytic and polynomial cases where our results apply.Comment: Accepted in Publ. Res. Inst. Math. Sc

    Noncommutative Choquet theory

    Full text link
    We introduce a new and extensive theory of noncommutative convexity along with a corresponding theory of noncommutative functions. We establish noncommutative analogues of the fundamental results from classical convexity theory, and apply these ideas to develop a noncommutative Choquet theory that generalizes much of classical Choquet theory. The central objects of interest in noncommutative convexity are noncommutative convex sets. The category of compact noncommutative sets is dual to the category of operator systems, and there is a robust notion of extreme point for a noncommutative convex set that is dual to Arveson's notion of boundary representation for an operator system. We identify the C*-algebra of continuous noncommutative functions on a compact noncommutative convex set as the maximal C*-algebra of the operator system of continuous noncommutative affine functions on the set. In the noncommutative setting, unital completely positive maps on this C*-algebra play the role of representing measures in the classical setting. The continuous convex noncommutative functions determine an order on the set of unital completely positive maps that is analogous to the classical Choquet order on probability measures. We characterize this order in terms of the extensions and dilations of the maps, providing a powerful new perspective on the structure of completely positive maps on operator systems. Finally, we establish a noncommutative generalization of the Choquet-Bishop-de Leeuw theorem asserting that every point in a compact noncommutative convex set has a representing map that is supported on the extreme boundary. In the separable case, we obtain a corresponding integral representation theorem.Comment: 81 pages; minor change
    • …
    corecore