304 research outputs found

    Complete stability region of PD controllers for TCP/AQM networks

    Get PDF
    "This paper addresses the stabilization problem of delay models of Transmission Control Protocol/Active Queue Management (TCP/AQM) by using a Proportional- Derivative (PD) controller as AQM strategy. The complete set of PD controllers that exponentially stabilizes the linearization is determined in counterpart with the existing works in the literature which only give an estimate of it. Additionally, a simple procedure for determining a non-fragile PD controller that admits controller coefficient perturbations is provided.

    Comparison of PI Controllers Designed for the Delay Model of TCP/AQM Networks

    Get PDF
    Cataloged from PDF version of article.One of the major problems of communication networks is congestion. In order to address this problem in TCP/IP networks, Active Queue Management (AQM) scheme is recommended. AQM aims to minimize the congestion by regulating the average queue size at the routers. To improve upon AQM, recently, several feedback control approaches were proposed. Among these approaches, PI controllers are gaining attention because of their simplicity and ease of implementation. In this paper, by utilizing the fluid-flow model of TCP networks, we study the PI controllers designed for TCP/AQM. We compare these controllers by first analyzing their robustness and fragility. Then, we implement these controllers in ns-2 platform and conduct simulation experiments to compare their performances in terms of queue length. Taken together, our results provide a guideline for choosing a PI controller for AQM given specific performance requirements. (C) 2013 Elsevier B.V. All rights reserved

    Pricing Link by Time

    Get PDF
    The combination of loss-based TCP and drop-tail routers often results in full buffers, creating large queueing delays. The challenge with parameter tuning and the drastic consequence of improper tuning have discouraged network administrators from enabling AQM even when routers support it. To address this problem, we propose a novel design principle for AQM, called the pricing-link-by-time (PLT) principle. PLT increases the link price as the backlog stays above a threshold ÎČ, and resets the price once the backlog goes below ÎČ. We prove that such a system exhibits cyclic behavior that is robust against changes in network environment and protocol parameters. While ÎČ approximately controls the level of backlog, the backlog dynamics are invariant for ÎČ across a wide range of values. Therefore, ÎČ can be chosen to reduce delay without undermining system performance. We validate these analytical results using packet-level simulation

    Congestion Control for Streaming Media

    Get PDF
    The Internet has assumed the role of the underlying communication network for applications such as file transfer, electronic mail, Web browsing and multimedia streaming. Multimedia streaming, in particular, is growing with the growth in power and connectivity of today\u27s computers. These Internet applications have a variety of network service requirements and traffic characteristics, which presents new challenges to the single best-effort service of today\u27s Internet. TCP, the de facto Internet transport protocol, has been successful in satisfying the needs of traditional Internet applications, but fails to satisfy the increasingly popular delay sensitive multimedia applications. Streaming applications often use UDP without a proper congestion avoidance mechanisms, threatening the well-being of the Internet. This dissertation presents an IP router traffic management mechanism, referred to as Crimson, that can be seamlessly deployed in the current Internet to protect well-behaving traffic from misbehaving traffic and support Quality of Service (QoS) requirements of delay sensitive multimedia applications as well as traditional Internet applications. In addition, as a means to enhance Internet support for multimedia streaming, this dissertation report presents design and evaluation of a TCP-Friendly and streaming-friendly transport protocol called the Multimedia Transport Protocol (MTP). Through a simulation study this report shows the Crimson network efficiently handles network congestion and minimizes queuing delay while providing affordable fairness protection from misbehaving flows over a wide range of traffic conditions. In addition, our results show that MTP offers streaming performance comparable to that provided by UDP, while doing so under a TCP-Friendly rate

    Comparison of PI controllers designed for the delay model of TCP/AQM networks

    Get PDF
    One of the major problems of communication networks is congestion. In order to address this problem in TCP/IP networks, Active Queue Management (AQM) scheme is recommended. AQM aims to minimize the congestion by regulating the average queue size at the routers. To improve upon AQM, recently, several feedback control approaches were proposed. Among these approaches, PI controllers are gaining attention because of their simplicity and ease of implementation. In this paper, by utilizing the fluid-flow model of TCP networks, we study the PI controllers designed for TCP/AQM. We compare these controllers by first analyzing their robustness and fragility. Then, we implement these controllers in ns-2 platform and conduct simulation experiments to compare their performances in terms of queue length. Taken together, our results provide a guideline for choosing a PI controller for AQM given specific performance requirements. © 2013 Elsevier B.V. All rights reserved

    Research and development program for non-linear structural modeling with advanced time-temperature dependent constitutive relationships

    Get PDF
    Results of a 20-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are reported. The program included: (1) the evaluation of a number of viscoplastic constitutive models in the published literature; (2) incorporation of three of the most appropriate constitutive models into the MARC nonlinear finite element program; (3) calibration of the three constitutive models against experimental data using Hastelloy-X material; and (4) application of the most appropriate constitutive model to a three dimensional finite element analysis of a cylindrical combustor liner louver test specimen to establish the capability of the viscoplastic model to predict component structural response

    Router-based algorithms for improving internet quality of service.

    Get PDF
    We begin this thesis by generalizing some results related to a recently proposed positive system model of TCP congestion control algorithms. Then, motivated by a mean ¯eld analysis of the positive system model, a novel, stateless, queue management scheme is designed: Multi-Level Comparisons with index l (MLC(l)). In the limit, MLC(l) enforces max-min fairness in a network of TCP flows. We go further, showing that counting past drops at a congested link provides su±cient information to enforce max-min fairness among long-lived flows and to reduce the flow completion times of short-lived flows. Analytical models are presented, and the accuracy of predictions are validated by packet level ns2 simulations. We then move our attention to e±cient measurement and monitoring techniques. A small active counter architecture is presented that addresses the problem of accurate approximation of statistics counter values at very-high speeds that can be both updated and estimated on a per-packet basis. These algorithms are necessary in the design of router-based flow control algorithms since on-chip Static RAM (SRAM) currently is a scarce resource, and being economical with its usage is an important task. A highly scalable method for heavy-hitter identifcation that uses our small active counters architecture is developed based on heuristic argument. Its performance is compared to several state-of-the-art algorithms and shown to out-perform them. In the last part of the thesis we discuss the delay-utilization tradeoff in the congested Internet links. While several groups of authors have recently analyzed this tradeoff, the lack of realistic assumption in their models and the extreme complexity in estimation of model parameters, reduces their applicability at real Internet links. We propose an adaptive scheme that regulates the available queue space to keep utilization at desired, high, level. As a consequence, in large-number-of-users regimes, sacrifcing 1-2% of bandwidth can result in queueing delays that are an order of magnitude smaller than in the standard BDP-buŸering case. We go further and introduce an optimization framework for describing the problem of interest and propose an online algorithm for solving it
    • 

    corecore