3,290 research outputs found

    Simplest random K-satisfiability problem

    Full text link
    We study a simple and exactly solvable model for the generation of random satisfiability problems. These consist of ÎłN\gamma N random boolean constraints which are to be satisfied simultaneously by NN logical variables. In statistical-mechanics language, the considered model can be seen as a diluted p-spin model at zero temperature. While such problems become extraordinarily hard to solve by local search methods in a large region of the parameter space, still at least one solution may be superimposed by construction. The statistical properties of the model can be studied exactly by the replica method and each single instance can be analyzed in polynomial time by a simple global solution method. The geometrical/topological structures responsible for dynamic and static phase transitions as well as for the onset of computational complexity in local search method are thoroughly analyzed. Numerical analysis on very large samples allows for a precise characterization of the critical scaling behaviour.Comment: 14 pages, 5 figures, to appear in Phys. Rev. E (Feb 2001). v2: minor errors and references correcte

    Comparison of PBO solvers in a dependency solving domain

    Full text link
    Linux package managers have to deal with dependencies and conflicts of packages required to be installed by the user. As an NP-complete problem, this is a hard task to solve. In this context, several approaches have been pursued. Apt-pbo is a package manager based on the apt project that encodes the dependency solving problem as a pseudo-Boolean optimization (PBO) problem. This paper compares different PBO solvers and their effectiveness on solving the dependency solving problem.Comment: In Proceedings LoCoCo 2010, arXiv:1007.083

    Quantum adiabatic optimization and combinatorial landscapes

    Full text link
    In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, Îł=M/N\gamma=M/N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (versus only energy) is used, and are able to show the existence of a dynamic threshold Îł=Îłd\gamma=\gamma_d starting with some value of K -- the number of variables in each clause. Beyond dynamic threshold, the algorithm should take exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz. We have been able to map the ensemble of random graphs onto another ensemble with fluctuations significantly reduced. This enabled us to obtain tight upper bounds on satisfiability transition and to recompute the dynamical transition using the extended set of landscapes.Comment: 41 pages, 10 figures; added a paragraph on paper's organization to the introduction, fixed reference
    • …
    corecore