5,960 research outputs found

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Evolutionary Computation Based Real-time Robot Arm Path-planning Using Beetle Antennae Search

    Get PDF

    Collision-free path planning for robots using B-splines and simulated annealing

    Get PDF
    This thesis describes a technique to obtain an optimal collision-free path for an automated guided vehicle (AGV) and/or robot in two and three dimensions by synthesizing a B-spline curve under geometric and intrinsic constraints. The problem is formulated as a combinatorial optimization problem and solved by using simulated annealing. A two-link planar manipulator is included to show that the B-spline curve can also be synthesized by adding kinematic characteristics of the robot. A cost function, which includes obstacle proximity, excessive arc length, uneven parametric distribution and, possibly, link proximity costs, is developed for the simulated annealing algorithm. Three possible cases for the orientation of the moving object are explored: (a) fixed orientation, (b) orientation as another independent variable, and (c) orientation given by the slope of the curve. To demonstrate the robustness of the technique, several examples are presented. Objects are modeled as ellipsoid type shapes. The procedure to obtain the describing parameters of the ellipsoid is also presented

    Experiments on in-channel swimming of an untethered biomimetic robot with different helical tails

    Get PDF
    Experiments are carried out with a cm-scale bio-mimetic swimming robot, which consists of a body and a rigid helical tail and mimics typical eukaryotic micro organisms, inside circular channels filled with viscous fluids. The body of the robot is made of a cylindrical capsule, which includes an onboard power supply, a dedicated DC-motor, and a driving circuitry with IR-receiver for remote control purposes. In experiments geometric parameters of the helical tail, wavelength and amplitude, and the diameter of the circular channels are varied to understand the effect of those parameters on the swimming speed of the robots. Models, based on slender body theory (SBT) and resistive force theory (RFT), are implemented to predict the swimming speeds, which are then compared with experimentally measured values. A simple model for the DC-motor dynamics is included to account for the contact friction effects on the body rotation rates. Model results agree reasonably well with experimental measurements

    Collision avoidance and dynamic modeling for wheeled mobile robots and industrial manipulators

    Get PDF
    Collision Avoidance and Dynamic Modeling are key topics for researchers dealing with mobile and industrial robotics. A wide variety of algorithms, approaches and methodologies have been exploited, designed or adapted to tackle the problems of finding safe trajectories for mobile robots and industrial manipulators, and of calculating reliable dynamics models able to capture expected and possible also unexpected behaviors of robots. The knowledge of these two aspects and their potential is important to ensure the efficient and correct functioning of Industry 4.0 plants such as automated warehouses, autonomous surveillance systems and assembly lines. Collision avoidance is a crucial aspect to improve automation and safety, and to solve the problem of planning collision-free trajectories in systems composed of multiple autonomous agents such as unmanned mobile robots and manipulators with several degrees of freedom. A rigorous and accurate model explaining the dynamics of robots, is necessary to tackle tasks such as simulation, torque estimation, reduction of mechanical vibrations and design of control law

    Dynamic Neuromechanical Sets for Locomotion

    Get PDF
    Most biological systems employ multiple redundant actuators, which is a complicated problem of controls and analysis. Unless assumptions about how the brain and body work together, and assumptions about how the body prioritizes tasks are applied, it is not possible to find the actuator controls. The purpose of this research is to develop computational tools for the analysis of arbitrary musculoskeletal models that employ redundant actuators. Instead of relying primarily on optimization frameworks and numerical methods or task prioritization schemes used typically in biomechanics to find a singular solution for actuator controls, tools for feasible sets analysis are instead developed to find the bounds of possible actuator controls. Previously in the literature, feasible sets analysis has been used in order analyze models assuming static poses. Here, tools that explore the feasible sets of actuator controls over the course of a dynamic task are developed. The cost-function agnostic methods of analysis developed in this work run parallel and in concert with other methods of analysis such as principle components analysis, muscle synergies theory and task prioritization. Researchers and healthcare professionals can gain greater insights into decision making during behavioral tasks by layering these other tools on top of feasible sets analysis
    • …
    corecore