521 research outputs found

    Timetabling in constraint logic programming

    Get PDF
    In this paper we describe the timetabling problem and its solvability in a Constraint Logic Programming Language. A solution to the problem has been developed and implemented in ECLiPSe, since it deals with finite domains, it has well-defined interfaces between basic building blocks and supports good debugging facilities. The implemented timetable was based on the existing, currently used, timetables at the School of Informatics at out university. It integrates constraints concerning room and period availability

    Iterated local search using an add and delete hyper- heuristic for university course timetabling

    Get PDF
    Hyper-heuristics are (meta-)heuristics that operate at a higher level to choose or generate a set of low-level (meta-)heuristics in an attempt of solve difficult optimization problems. Iterated local search (ILS) is a well-known approach for discrete optimization, combining perturbation and hill-climbing within an iterative framework. In this study, we introduce an ILS approach, strengthened by a hyper-heuristic which generates heuristics based on a fixed number of add and delete operations. The performance of the proposed hyper-heuristic is tested across two different problem domains using real world benchmark of course timetabling instances from the second International Timetabling Competition Tracks 2 and 3. The results show that mixing add and delete operations within an ILS framework yields an effective hyper-heuristic approach

    Solving the course scheduling problem by constraint programming and simulated annealing

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2008Includes bibliographical references (leaves: 87-62)Text in English; Abstract: Turkish and Englishix, 80 leavesIn this study it has been tackled the NP-complete problem of academic class scheduling (or timetabling). The aim of this thesis is finding a feasible solution for Computer Engineering Department of Ä°zmir Institute of Technology. Hence, a solution method for course timetabling is presented in this thesis, consisting of two phases: a constraint programming phase to provide an initial solution and a simulated annealing phase with different neighbourhood searching algorithms. When the experimental data are obtained it is noticed that according to problem structure, whether the problem is tightened or loosen constrained, the performance of a hybrid approach can change. These different behaviours of the approach are demonstrated by two different timetabling problem instances. In addition to all these, the neighbourhood searching algorithms used in the simulated annealing technique are tested in different combinations and their performances are presented

    A constraint logic programming approach to examination scheduling

    Get PDF
    The scheduling of exams in institutions of higher education is a large, highly constrained andcomplex problem. The recent advent of modularity in many universities has resulted in an increase ofthe complexity of the problem, making the manual achievement of an acceptable solution a tedious andsometimes almost impossible problem. Examination scheduling is the process of assigning exams totime slots in a predetermined period of time and, simultaneously, to assign rooms and invigilators toeach exam, satisfying a set of different constraints. This includes avoiding double bookings for rooms,teachers and students, room capacity and type constraints, exam sequence and spreading constraints,preassignments and availability of resources. In this paper we analyse the exam scheduling problemand propose a constraint logic programming approach to solve it. Details concerning problemrepresentation, hard and soft constraints definition and labelling strategies as well as some preliminaryresults are also discussed

    Models and Algorithms for School Timetabling

    Get PDF
    In constraint programming, combinatorial problems are specified declaratively in terms of constraints. Constraints are relations over problem variables that define the space of solutions by specifying restrictions on the values that variables may take simultaneously. To solve problems stated in terms of constraints, the constraint programmer typically combines chronological backtracking with constraint propagation that identifies infeasible value combinations and prunes the search space. In recent years, constraint programming has emerged as a key technology for combinatorial optimization in industrial applications. In this success, global constraints have been playing a vital role. Global constraints are carefully designed abstractions that, in a concise and natural way, allow to model problems that arise in different fields of application. For example, the alldiff constraint allows to state that variables must take pairwise distinct values; it has numerous applications in timetabling and scheduling. In school timetabling, we are required to schedule a given set of meetings between students and teachers s.t. the resulting timetables are feasible and acceptable to all people involved. Since schools differ in their educational policies, the school-timetabling problem occurs in several variations. Nevertheless, a set of entities and constraints among them exist that are common to these variations. This common core still gives rise to NP-complete combinatorial problems. In the first place, this thesis proposes to model the common core of school-timetabling problems by means of global constraints. The presentation continues with a series of operational enhancements to the resulting problem solver which are grounded on the "track parallelization problem" (TPP). A TPP is specified by a set of task sets which are called "tracks". The problem of solving a TPP consists in scheduling the tasks s.t. the tracks are processed in parallel. We show how to infer TPPs in school timetabling and we investigate two ways of TPP propagation: On the one hand, we utilize TPPs to down-size our models. On the other hand, we propagate TPPs to prune the search space. To this end, we introduce the TPP constraint along with a suitable constraint solver for modeling and solving TPPs in a finite-domain constraint programming framework. To investigate our problem solvers' behavior, we performed a large-scale empirical study. When designing the experiment, the top priority was to obtain results that are both reliable from a statistical point of view and practically relevant. To this end, the sample sizes have been chosen accordingly - for each school, our problem set contains 1000 problems - and the problems have been generated from detailed models of ten representative schools. Our timetabling engine essentially embeds network-flow techniques and value sweep pruning into chronological backtracking
    • …
    corecore