6,445 research outputs found

    FlightGoggles: A Modular Framework for Photorealistic Camera, Exteroceptive Sensor, and Dynamics Simulation

    Full text link
    FlightGoggles is a photorealistic sensor simulator for perception-driven robotic vehicles. The key contributions of FlightGoggles are twofold. First, FlightGoggles provides photorealistic exteroceptive sensor simulation using graphics assets generated with photogrammetry. Second, it provides the ability to combine (i) synthetic exteroceptive measurements generated in silico in real time and (ii) vehicle dynamics and proprioceptive measurements generated in motio by vehicle(s) in a motion-capture facility. FlightGoggles is capable of simulating a virtual-reality environment around autonomous vehicle(s). While a vehicle is in flight in the FlightGoggles virtual reality environment, exteroceptive sensors are rendered synthetically in real time while all complex extrinsic dynamics are generated organically through the natural interactions of the vehicle. The FlightGoggles framework allows for researchers to accelerate development by circumventing the need to estimate complex and hard-to-model interactions such as aerodynamics, motor mechanics, battery electrochemistry, and behavior of other agents. The ability to perform vehicle-in-the-loop experiments with photorealistic exteroceptive sensor simulation facilitates novel research directions involving, e.g., fast and agile autonomous flight in obstacle-rich environments, safe human interaction, and flexible sensor selection. FlightGoggles has been utilized as the main test for selecting nine teams that will advance in the AlphaPilot autonomous drone racing challenge. We survey approaches and results from the top AlphaPilot teams, which may be of independent interest.Comment: Initial version appeared at IROS 2019. Supplementary material can be found at https://flightgoggles.mit.edu. Revision includes description of new FlightGoggles features, such as a photogrammetric model of the MIT Stata Center, new rendering settings, and a Python AP

    The Phoenix Drone: An Open-Source Dual-Rotor Tail-Sitter Platform for Research and Education

    Full text link
    In this paper, we introduce the Phoenix drone: the first completely open-source tail-sitter micro aerial vehicle (MAV) platform. The vehicle has a highly versatile, dual-rotor design and is engineered to be low-cost and easily extensible/modifiable. Our open-source release includes all of the design documents, software resources, and simulation tools needed to build and fly a high-performance tail-sitter for research and educational purposes. The drone has been developed for precision flight with a high degree of control authority. Our design methodology included extensive testing and characterization of the aerodynamic properties of the vehicle. The platform incorporates many off-the-shelf components and 3D-printed parts, in order to keep the cost down. Nonetheless, the paper includes results from flight trials which demonstrate that the vehicle is capable of very stable hovering and accurate trajectory tracking. Our hope is that the open-source Phoenix reference design will be useful to both researchers and educators. In particular, the details in this paper and the available open-source materials should enable learners to gain an understanding of aerodynamics, flight control, state estimation, software design, and simulation, while experimenting with a unique aerial robot.Comment: In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'19), Montreal, Canada, May 20-24, 201

    A Real-Time Remote IDS Testbed for Connected Vehicles

    Full text link
    Connected vehicles are becoming commonplace. A constant connection between vehicles and a central server enables new features and services. This added connectivity raises the likelihood of exposure to attackers and risks unauthorized access. A possible countermeasure to this issue are intrusion detection systems (IDS), which aim at detecting these intrusions during or after their occurrence. The problem with IDS is the large variety of possible approaches with no sensible option for comparing them. Our contribution to this problem comprises the conceptualization and implementation of a testbed for an automotive real-world scenario. That amounts to a server-side IDS detecting intrusions into vehicles remotely. To verify the validity of our approach, we evaluate the testbed from multiple perspectives, including its fitness for purpose and the quality of the data it generates. Our evaluation shows that the testbed makes the effective assessment of various IDS possible. It solves multiple problems of existing approaches, including class imbalance. Additionally, it enables reproducibility and generating data of varying detection difficulties. This allows for comprehensive evaluation of real-time, remote IDS.Comment: Peer-reviewed version accepted for publication in the proceedings of the 34th ACM/SIGAPP Symposium On Applied Computing (SAC'19
    • …
    corecore