65,248 research outputs found

    Superposition with First-class {B}ooleans and Inprocessing Clausification

    Get PDF
    International audienceWe present a complete superposition calculus for first-order logic with an interpreted Boolean type. Our motivation is to lay the foundation for refutationally complete calculi in more expressive logics with Booleans, such as higher-order logic, and to make superposition work efficiently on problems that would be obfuscated when using clausification as preprocessing. Working directly on formulas, our calculus avoids the costly axiomatic encoding of the theory of Booleans into first-order logic and offers various ways to interleave clausification with other derivation steps. We evaluate our calculus using the Zipperposition theorem prover, and observe that, with no tuning of parameters, our approach is on a par with the state-of-the-art approach

    Certified Exact Transcendental Real Number Computation in Coq

    Get PDF
    Reasoning about real number expressions in a proof assistant is challenging. Several problems in theorem proving can be solved by using exact real number computation. I have implemented a library for reasoning and computing with complete metric spaces in the Coq proof assistant and used this library to build a constructive real number implementation including elementary real number functions and proofs of correctness. Using this library, I have created a tactic that automatically proves strict inequalities over closed elementary real number expressions by computation.Comment: This paper is to be part of the proceedings of the 21st International Conference on Theorem Proving in Higher Order Logics (TPHOLs 2008

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    On the uniform one-dimensional fragment

    Full text link
    The uniform one-dimensional fragment of first-order logic, U1, is a recently introduced formalism that extends two-variable logic in a natural way to contexts with relations of all arities. We survey properties of U1 and investigate its relationship to description logics designed to accommodate higher arity relations, with particular attention given to DLR_reg. We also define a description logic version of a variant of U1 and prove a range of new results concerning the expressivity of U1 and related logics

    Complexity of Prioritized Default Logics

    Full text link
    In default reasoning, usually not all possible ways of resolving conflicts between default rules are acceptable. Criteria expressing acceptable ways of resolving the conflicts may be hardwired in the inference mechanism, for example specificity in inheritance reasoning can be handled this way, or they may be given abstractly as an ordering on the default rules. In this article we investigate formalizations of the latter approach in Reiter's default logic. Our goal is to analyze and compare the computational properties of three such formalizations in terms of their computational complexity: the prioritized default logics of Baader and Hollunder, and Brewka, and a prioritized default logic that is based on lexicographic comparison. The analysis locates the propositional variants of these logics on the second and third levels of the polynomial hierarchy, and identifies the boundary between tractable and intractable inference for restricted classes of prioritized default theories

    Systematic Verification of the Modal Logic Cube in Isabelle/HOL

    Get PDF
    We present an automated verification of the well-known modal logic cube in Isabelle/HOL, in which we prove the inclusion relations between the cube's logics using automated reasoning tools. Prior work addresses this problem but without restriction to the modal logic cube, and using encodings in first-order logic in combination with first-order automated theorem provers. In contrast, our solution is more elegant, transparent and effective. It employs an embedding of quantified modal logic in classical higher-order logic. Automated reasoning tools, such as Sledgehammer with LEO-II, Satallax and CVC4, Metis and Nitpick, are employed to achieve full automation. Though successful, the experiments also motivate some technical improvements in the Isabelle/HOL tool.Comment: In Proceedings PxTP 2015, arXiv:1507.0837
    • …
    corecore