5,164 research outputs found

    Uniformly partitioning images on virtual hexagonal structure

    Full text link
    Hexagonal structure is different from the traditionnal square structure for image representation. The geometrical arrangement of pixels on hexagonal structure can be described in terms of a hexagonal grid. Uniformly separating image into seven similar copies with a smaller scale has commonly been used for parallel and accurate image processing on hexagonal structure. However, all the existing hardware for capturing image and for displaying image are produced based on square architecture. It has become a serious problem affecting the advanced research based on hexagonal structure. Furthermore, the current techniques used for uniform separation of images on hexagonal structure do not coincide with the rectangular shape of images. This has been an obstacle in the use of hexagonal structure for image processing. In this paper, we briefly review a newly developed virtual hexagonal structure that is scalable. Based on this virtual structure, algorithms for uniform image separation are presented. The virtual hexagonal structure retains image resolution during the process of image separation, and does not introduce distortion. Furthermore, images can be smoothly and easily transferred between the traditional square structure and the hexagonal structure while the image shape is kept in rectangle. © 2006 IEEE

    Reconfigurable Systems: A Potential Solution to the von Neumann Bottleneck

    Get PDF
    The difficulty of overcoming the disparity between processor speeds and data access speeds, a condition known as the von Neumann bottleneck, has been a source of consternation for computer hardware developers for many years. Although a number of temporary solutions have been proposed and implemented in modern machines, these solutions have only managed to treat the major symptoms, rather than solve the root problem. As the number of transistors on a chip roughly doubles every two years, the von Neumann bottleneck has continued to tighten in spite of these solutions, prompting some computer hardware professionals to advocate a paradigm shift away from the von Neumann architecture into something entirely new. Many have begun advocating the relatively new technology of reconfigurable systems, popularly known as morphware. The difficulty with adopting a new architectural paradigm, however, is that developers on both sides of the software-hardware spectrum must start from scratch, creating entirely new operating systems, hardware peripherals, application software, and user interfaces, all of which must seem familiar to the end user, yet still take advantage of the improvements morphware has to offer. With this in mind, this thesis builds off of the fundamental theory and current implementations of morphware to describe the processes and products necessary to develop and deliver morphware to the average user as a viable alternative to current technology

    Neural function approximation on graphs: shape modelling, graph discrimination & compression

    Get PDF
    Graphs serve as a versatile mathematical abstraction of real-world phenomena in numerous scientific disciplines. This thesis is part of the Geometric Deep Learning subject area, a family of learning paradigms, that capitalise on the increasing volume of non-Euclidean data so as to solve real-world tasks in a data-driven manner. In particular, we focus on the topic of graph function approximation using neural networks, which lies at the heart of many relevant methods. In the first part of the thesis, we contribute to the understanding and design of Graph Neural Networks (GNNs). Initially, we investigate the problem of learning on signals supported on a fixed graph. We show that treating graph signals as general graph spaces is restrictive and conventional GNNs have limited expressivity. Instead, we expose a more enlightening perspective by drawing parallels between graph signals and signals on Euclidean grids, such as images and audio. Accordingly, we propose a permutation-sensitive GNN based on an operator analogous to shifts in grids and instantiate it on 3D meshes for shape modelling (Spiral Convolutions). Following, we focus on learning on general graph spaces and in particular on functions that are invariant to graph isomorphism. We identify a fundamental trade-off between invariance, expressivity and computational complexity, which we address with a symmetry-breaking mechanism based on substructure encodings (Graph Substructure Networks). Substructures are shown to be a powerful tool that provably improves expressivity while controlling computational complexity, and a useful inductive bias in network science and chemistry. In the second part of the thesis, we discuss the problem of graph compression, where we analyse the information-theoretic principles and the connections with graph generative models. We show that another inevitable trade-off surfaces, now between computational complexity and compression quality, due to graph isomorphism. We propose a substructure-based dictionary coder - Partition and Code (PnC) - with theoretical guarantees that can be adapted to different graph distributions by estimating its parameters from observations. Additionally, contrary to the majority of neural compressors, PnC is parameter and sample efficient and is therefore of wide practical relevance. Finally, within this framework, substructures are further illustrated as a decisive archetype for learning problems on graph spaces.Open Acces

    An iconography of insularity : a cosmological interpretation of some images and spaces in the late neolithic temples of Malta

    Get PDF
    This paper proposes a fresh model for interpreting some of the iconography and megalithic architectural forms that emerged in Malta during the Late Neolithic. Recent studies of the relationship between the Maltese archipelago and the world beyond, and between the monumental megalithic sites and their landscape setting, will inform an interpretation of some of the iconography and architectural forms that characterize these sites. Patterns in their use of spatial order, architectural devices and carved reliefs are interpreted as elements in a programmatic recreation of an island cosmology. It is suggested that the prehistoric islanders used these images and spaces to express and mediate concerns with cosmological order.peer-reviewe

    Distributed approaches for coverage missions with multiple heterogeneous UAVs for coastal areas.

    Get PDF
    This Thesis focuses on a high-level framework proposal for heterogeneous aerial, fixed wing teams of robots, which operate in complex coastal areas. Recent advances in the computational capabilities of modern processors along with the decrement of small scale aerial platform manufacturing costs, have given researchers the opportunity to propose efficient and low-cost solutions to a wide variety of problems. Regarding marine sciences and more generally coastal or sea operations, the use of aerial robots brings forth a number of advantages, including information redundancy and operator safety. This Thesis initially deals with complex coastal decomposition in relation with a vehicles’ on-board sensor. This decomposition decreases the computational complexity of planning a flight path, while respecting various aerial or ground restrictions. The sensor-based area decomposition also facilitates a team-wide heterogeneous solution for any team of aerial vehicles. Then, it proposes a novel algorithmic approach of partitioning any given complex area, for an arbitrary number of Unmanned Aerial Vehicles (UAV). This partitioning schema, respects the relative flight autonomy capabilities of the robots, providing them a corresponding region of interest. In addition, a set of algorithms is proposed for obtaining coverage waypoint plans for those areas. These algorithms are designed to afford the non-holonomic nature of fixed-wing vehicles and the restrictions their dynamics impose. Moreover, this Thesis also proposes a variation of a well-known path tracking algorithm, in order to further reduce the flight error of waypoint following, by introducing intermediate waypoints and providing an autopilot parametrisation. Finally, a marine studies test case of buoy information extraction is presented, demonstrating in that manner the flexibility and modular nature of the proposed framework.Esta tesis se centra en la propuesta de un marco de alto nivel para equipos heterogéneos de robots de ala fija que operan en áreas costeras complejas. Los avances recientes en las capacidades computacionales de los procesadores modernos, junto con la disminución de los costes de fabricación de plataformas aéreas a pequeña escala, han brindado a los investigadores la oportunidad de proponer soluciones eficientes y de bajo coste para enfrentar un amplio abanico de cuestiones. Con respecto a las ciencias marinas y, en términos más generales, a las operaciones costeras o marítimas, el uso de robots aéreos conlleva una serie de ventajas, incluidas la redundancia de la información y la seguridad del operador. Esta tesis trata inicialmente con la descomposición de áreas costeras complejas en relación con el sensor a bordo de un vehículo. Esta descomposición disminuye la complejidad computacional de la planificación de una trayectoria de vuelo, al tiempo que respeta varias restricciones aéreas o terrestres. La descomposición del área basada en sensores también facilita una solución heterogénea para todo el equipo para cualquier equipo de vehículos aéreos. Luego, propone un novedoso enfoque algorítmico de partición de cualquier área compleja dada, para un número arbitrario de vehículos aéreos no tripulados (UAV). Este esquema de partición respeta las capacidades relativas de autonomía de vuelo de los robots, proporcionándoles una región de interés correspondiente. Además, se propone un conjunto de algoritmos para obtener planes de puntos de cobertura para esas áreas. Estos algoritmos están diseñados teniendo en cuenta la naturaleza no holonómica de los vehículos de ala fija y las restricciones que impone su dinámica. En ese sentido, esta Tesis también ofrece una variación de un algoritmo de seguimiento de rutas bien conocido, con el fin de reducir aún más el error de vuelo del siguiente punto de recorrido, introduciendo puntos intermedios y proporcionando una parametrización del piloto automático. Finalmente, se presenta un caso de prueba de estudios marinos de extracción de información de boyas, que demuestra de esa manera la flexibilidad y el carácter modular del marco propuesto

    Aerial Remote Sensing in Agriculture: A Practical Approach to Area Coverage and Path Planning for Fleets of Mini Aerial Robots

    Get PDF
    In this paper, a system that allows applying precision agriculture techniques is described. The application is based on the deployment of a team of unmanned aerial vehicles that are able to take georeferenced pictures in order to create a full map by applying mosaicking procedures for postprocessing. The main contribution of this work is practical experimentation with an integrated tool. Contributions in different fields are also reported. Among them is a new one-phase automatic task partitioning manager, which is based on negotiation among the aerial vehicles, considering their state and capabilities. Once the individual tasks are assigned, an optimal path planning algorithm is in charge of determining the best path for each vehicle to follow. Also, a robust flight control based on the use of a control law that improves the maneuverability of the quadrotors has been designed. A set of field tests was performed in order to analyze all the capabilities of the system, from task negotiations to final performance. These experiments also allowed testing control robustness under different weather conditions
    corecore