1,658 research outputs found

    On the equivalence between assumption-based argumentation and logic programming

    Get PDF
    Assumption-Based Argumentation (ABA) has been shown to subsume various other non-monotonic reasoning formalisms, among them normal logic programming (LP). We re-examine the relationship between ABA and LP and show that normal LP also subsumes (flat) ABA. More precisely, we specify a procedure that given a (flat) ABA framework yields an associated logic program with almost the same syntax whose semantics coincide with those of the ABA framework. That is, the 3-valued stable (respectively well-founded, regular, 2-valued stable, and ideal) models of the associated logic program coincide with the complete (respectively grounded, preferred, stable, and ideal) assumption labellings and extensions of the ABA framework. Moreover, we show how our results on the translation from ABA to LP can be reapplied for a reverse translation from LP to ABA, and observe that some of the existing results in the literature are in fact special cases of our work. Overall, we show that (flat) ABA frameworks can be seen as normal logic programs with a slightly different syntax. This implies that methods developed for one of these formalisms can be equivalently applied to the other by simply modifying the syntax

    On the equivalence between logic programming semantics and argumentation semantics

    Get PDF
    This work has been supported by the National Research Fund, Luxembourg (LAAMI project), by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant Ref. EP/J012084/1 (SAsSy project), by CNPq (Universal 2012 ā€“ Proc. 473110/2012-1), and by CNPq/CAPES (Casadinho/PROCAD 2011).Peer reviewedPreprin

    A QBF-based Formalization of Abstract Argumentation Semantics

    Get PDF
    Supported by the National Research Fund, Luxembourg (LAAMI project) and by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref. EP/J012084/1 (SAsSY project).Peer reviewedPostprin

    Abduction and Dialogical Proof in Argumentation and Logic Programming

    Full text link
    We develop a model of abduction in abstract argumentation, where changes to an argumentation framework act as hypotheses to explain the support of an observation. We present dialogical proof theories for the main decision problems (i.e., finding hypothe- ses that explain skeptical/credulous support) and we show that our model can be instantiated on the basis of abductive logic programs.Comment: Appears in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    A Parameterised Hierarchy of Argumentation Semantics for Extended Logic Programming and its Application to the Well-founded Semantics

    Full text link
    Argumentation has proved a useful tool in defining formal semantics for assumption-based reasoning by viewing a proof as a process in which proponents and opponents attack each others arguments by undercuts (attack to an argument's premise) and rebuts (attack to an argument's conclusion). In this paper, we formulate a variety of notions of attack for extended logic programs from combinations of undercuts and rebuts and define a general hierarchy of argumentation semantics parameterised by the notions of attack chosen by proponent and opponent. We prove the equivalence and subset relationships between the semantics and examine some essential properties concerning consistency and the coherence principle, which relates default negation and explicit negation. Most significantly, we place existing semantics put forward in the literature in our hierarchy and identify a particular argumentation semantics for which we prove equivalence to the paraconsistent well-founded semantics with explicit negation, WFSXp_p. Finally, we present a general proof theory, based on dialogue trees, and show that it is sound and complete with respect to the argumentation semantics.Comment: To appear in Theory and Practice of Logic Programmin

    On the Difference between Assumption-Based Argumentation and Abstract Argumentation

    Get PDF
    Acknowledgements The first author has been supported by the National Research Fund, Luxembourg (LAAMI project) and by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref. EP/J012084/1 (SAsSy project). The second and third authors have been supported by CNPq (Universal 2012 - Proc. no. 473110/2012-1), CAPES (PROCAD 2009) and CNPq/CAPES (Casadinho/PROCAD 2011).Peer reviewedPostprin
    • ā€¦
    corecore