12 research outputs found

    Glasius bio-inspired neural networks based UV-C disinfection path planning improved by preventive deadlock processing algorithm

    Get PDF
    The COVID-19 pandemic made robot manufacturers explore the idea of combining mobile robotics with UV-C light to automate the disinfection processes. But performing this process in an optimum way introduces some challenges: on the one hand, it is necessary to guarantee that all surfaces receive the radiation level to ensure the disinfection; at the same time, it is necessary to minimize the radiation dose to avoid the damage of the environment. In this work, both challenges are addressed with the design of a complete coverage path planning (CCPP) algorithm. To do it, a novel architecture that combines the glasius bio-inspired neural network (GBNN), a motion strategy, an UV-C estimator, a speed controller, and a pure pursuit controller have been designed. One of the main issues in CCPP is the deadlocks. In this application they may cause a loss of the operation, lack of regularity and high peaks in the radiation dose map, and in the worst case, they can make the robot to get stuck and not complete the disinfection process. To tackle this problem, in this work we propose a preventive deadlock processing algorithm (PDPA) and an escape route generator algorithm (ERGA). Simulation results show how the application of PDPA and the ERGA allow to complete complex maps in an efficient way where the application of GBNN is not enough. Indeed, a 58% more of covered surface is observed. Furthermore, two different motion strategies have been compared: boustrophedon and spiral motion, to check its influence on the performance of the robot navigation

    Virtual Structure Based Formation Tracking of Multiple Wheeled Mobile Robots: An Optimization Perspective

    Get PDF
    Today, with the increasing development of science and technology, many systems need to be optimized to find the optimal solution of the system. this kind of problem is also called optimization problem. Especially in the formation problem of multi-wheeled mobile robots, the optimization algorithm can help us to find the optimal solution of the formation problem. In this paper, the formation problem of multi-wheeled mobile robots is studied from the point of view of optimization. In order to reduce the complexity of the formation problem, we first put the robots with the same requirements into a group. Then, by using the virtual structure method, the formation problem is reduced to a virtual WMR trajectory tracking problem with placeholders, which describes the expected position of each WMR formation. By using placeholders, you can get the desired track for each WMR. In addition, in order to avoid the collision between multiple WMR in the group, we add an attraction to the trajectory tracking method. Because MWMR in the same team have different attractions, collisions can be easily avoided. Through simulation analysis, it is proved that the optimization model is reasonable and correct. In the last part, the limitations of this model and corresponding suggestions are given

    A Comprehensive Overview of Classical and Modern Route Planning Algorithms for Self-Driving Mobile Robots

    Get PDF
    Mobile robots are increasingly being applied in a variety of sectors, including agricultural, firefighting, and search and rescue operations. Robotics and autonomous technology research and development have played a major role in making this possible. Before a robot can reliably and effectively navigate a space without human aid, there are still several challenges to be addressed. When planning a path to its destination, the robot should be able to gather information from its surroundings and take the appropriate actions to avoid colliding with obstacles along the way. The following review analyses and compares 200 articles from two databases, Scopus and IEEE Xplore, and selects 60 articles as references from those articles. This evaluation focuses mostly on the accuracy of the different path-planning algorithms. Common collision-free path planning methodologies are examined in this paper, including classical or traditional and modern intelligence techniques, as well as both global and local approaches, in static and dynamic environments. Classical or traditional methods, such as Roadmaps (Visibility Graph and Voronoi Diagram), Potential Fields, and Cell Decomposition, and modern methodologies such as heuristic-based (Dijkstra Method, A* Algorithms, and D* Algorithms), metaheuristics algorithms (such as PSO, Bat Algorithm, ACO, and Genetic Algorithm), and neural systems such as fuzzy neural networks or fuzzy logic (FL) and Artificial Neural Networks (ANN) are described in this report. In this study, we outline the ideas, benefits, and downsides of modeling and path-searching technologies for a mobile robot

    AUV planning and calibration method considering concealment in uncertain environments

    Get PDF
    IntroductionAutonomous underwater vehicles (AUVs) are required to thoroughly scan designated areas during underwater missions. They typically follow a zig-zag trajectory to achieve full coverage. However, effective coverage can be challenging in complex environments due to the accumulation and drift of navigation errors. Possible solutions include surfacing for satellite positioning or underwater acoustic positioning using transponders on other vehicles. Nevertheless, surfacing or active acoustics can compromise stealth during reconnaissance missions in hostile areas by revealing the vehicle’s location.MethodsWe propose calibration and planning strategies based on error models and acoustic positioning to address this challenge. Acoustic markers are deployed via surface ships to minimize navigation errors while maintaining stealth. And a new path planning method using a traceless Kalman filter and acoustic localization is proposed to achieve full-area coverage of AUVs. By analyzing the statistics of accumulated sensor errors, we optimize the positions of acoustic markers to communicate with AUVs and achieve better coverage. AUV trajectory concealment is achieved during detection by randomizing the USV navigation trajectory and irregularizing the locations of acoustic marker.ResultsThe proposed method enables the cumulative determination of the absolute position of a target with low localization error in a side-scan sonar-based search task. Simulations based on large-scale maps demonstrate the effectiveness and robustness of the proposed algorithm.DiscussionSolving the problem of accumulating underwater localization errors based on inertial navigation by error modeling and acoustic calibration is a typical way. In this paper, we have implemented a method to solve the localization error in a search scenario where stealth is considered

    A generalized laser simulator algorithm for optimal path planning in constraints environment

    Get PDF
    Path planning plays a vital role in autonomous mobile robot navigation, and it has thus become one of the most studied areas in robotics. Path planning refers to a robot's search for a collision-free and optimal path from a start point to a predefined goal position in a given environment. This research focuses on developing a novel path planning algorithm, called Generalized Laser Simulator (GLS), to solve the path planning problem of mobile robots in a constrained environment. This approach allows finding the path for a mobile robot while avoiding obstacles, searching for a goal, considering some constraints and finding an optimal path during the robot movement in both known and unknown environments. The feasible path is determined between the start and goal positions by generating a wave of points in all directions towards the goal point with adhering to constraints. A simulation study employing the proposed approach is applied to the grid map settings to determine a collision-free path from the start to goal positions. First, the grid mapping of the robot's workspace environment is constructed, and then the borders of the workspace environment are detected based on the new proposed function. This function guides the robot to move toward the desired goal. Two concepts have been implemented to find the best candidate point to move next: minimum distance to goal and maximum index distance to the boundary, integrated by negative probability to sort out the most preferred point for the robot trajectory determination. In order to construct an optimal collision-free path, an optimization step was included to find out the minimum distance within the candidate points that have been determined by GLS while adhering to particular constraint's rules and avoiding obstacles. The proposed algorithm will switch its working pattern based on the goal minimum and boundary maximum index distances. For static obstacle avoidance, the boundaries of the obstacle(s) are considered borders of the environment. However, the algorithm detects obstacles as a new border in dynamic obstacles once it occurs in front of the GLS waves. The proposed method has been tested in several test environments with different degrees of complexity. Twenty different arbitrary environments are categorized into four: Simple, complex, narrow, and maze, with five test environments in each. The results demonstrated that the proposed method could generate an optimal collision-free path. Moreover, the proposed algorithm result are compared to some common algorithms such as the A* algorithm, Probabilistic Road Map, RRT, Bi-directional RRT, and Laser Simulator algorithm to demonstrate its effectiveness. The suggested algorithm outperforms the competition in terms of improving path cost, smoothness, and search time. A statistical test was used to demonstrate the efficiency of the proposed algorithm over the compared methods. The GLS is 7.8 and 5.5 times faster than A* and LS, respectively, generating a path 1.2 and 1.5 times shorter than A* and LS. The mean value of the path cost achieved by the proposed approach is 4% and 15% lower than PRM and RRT, respectively. The mean path cost generated by the LS algorithm, on the other hand, is 14% higher than that generated by the PRM. Finally, to verify the performance of the developed method for generating a collision-free path, experimental studies were carried out using an existing WMR platform in labs and roads. The experimental work investigates complete autonomous WMR path planning in the lab and road environments using live video streaming. The local maps were built using data from live video streaming s by real-time image processing to detect the segments of the lab and road environments. The image processing includes several operations to apply GLS on the prepared local map. The proposed algorithm generates the path within the prepared local map to find the path between start-to-goal positions to avoid obstacles and adhere to constraints. The experimental test shows that the proposed method can generate the shortest path and best smooth trajectory from start to goal points in comparison with the laser simulator

    Review of Intelligent Control Systems with Robotics

    Get PDF
    Interactive between human and robot assumes a significant job in improving the productivity of the instrument in mechanical technology. Numerous intricate undertakings are cultivated continuously via self-sufficient versatile robots. Current automated control frameworks have upset the creation business, making them very adaptable and simple to utilize. This paper examines current and up and coming sorts of control frameworks and their execution in mechanical technology, and the job of AI in apply autonomy. It additionally expects to reveal insight into the different issues around the control frameworks and the various approaches to fix them. It additionally proposes the basics of apply autonomy control frameworks and various kinds of mechanical technology control frameworks. Each kind of control framework has its upsides and downsides which are talked about in this paper. Another kind of robot control framework that upgrades and difficulties the pursuit stage is man-made brainpower. A portion of the speculations utilized in man-made reasoning, for example, Artificial Intelligence (AI) such as fuzzy logic, neural network and genetic algorithm, are itemized in this paper. At long last, a portion of the joint efforts between mechanical autonomy, people, and innovation were referenced. Human coordinated effort, for example, Kinect signal acknowledgment utilized in games and versatile upper-arm-based robots utilized in the clinical field for individuals with inabilities. Later on, it is normal that the significance of different sensors will build, accordingly expanding the knowledge and activity of the robot in a modern domai

    Reitinsuunnittelu määrätyssä järjestyksessä tehtäville peltotöille usean työkoneen yhteistyönä

    Get PDF
    Coverage path planning is the task of finding a collision free path that passes over every point of an area or volume of interest. In agriculture, the coverage task is encountered especially in the process of crop cultivation. Several tasks are performed on the field, one after the other, during the cultivation cycle. Cooperation means that multiple agents, in this case vehicles, are working together towards a common goal. Several studies consider the problem where a single task is divided and assigned among the agents. In this thesis, however, the vehicles have different tasks that are sequentially dependent, that is, the first task must be completed before the other. The tasks are performed simultaneously on the same area. The literature review suggests that there is a lack of previous research on this topic. The objective of this thesis was to develop an algorithm to solve the cooperative coverage path planning problem for sequentially dependent tasks. A tool chain that involves Matlab, Simulink and Visual Studio was adapted for the development and testing of the solution. A development and testing architecture was designed including a compatible interface to a simulation and a real-life test environment. Two different algorithms were implemented based on the idea of computing short simultaneous paths at a time and scheduling them in real-time. The results were successfully demonstrated in a real-life test environment with two tractors equipped with a disc cultivator and a seeder. The objective was to sow the test area. The test drives show that with the algorithms that were developed in this thesis it is possible to perform two sequentially dependent agricultural coverage tasks simultaneously on the same area.Kattavassa reitinsuunnittelussa yritetään löytää polku, jonka aikana määritelty ala tai tilavuus tulee käytyä läpi niin että alueen jokainen piste on käsitelty. Maataloudessa tämä tehtävä on merkityksellinen erityisesti peltoviljelyssä. Useita peltotöitä suoritetaan yksi toisensa jälkeen samalla alueella viljelyvuoden aikana. Useissa tutkimuksissa käsitellään yhteistyönä tehtävää reitinsuunnittelua, jossa yksi tehtävä on jaettu osiin ja osat jaetaan useiden tekijöiden kuten robottien kesken. Tässä diplomityössä peltotyökoneilla on kuitenkin omat erilliset tehtävänsä, joilla on määrätty järjestys, eli niiden suorittaminen riippuu työjärjestyksestä. Työkoneet työskentelevät samanaikaisesti samalla alueella. Diplomityössä tehty kirjallisuuskatsaus viittaa siihen, että vastaavaa aihetta ei ole aiemmin tutkittu. Tämän diplomityön tavoitteena on kehittää algoritmi, jolla voidaan toteuttaa reitinsuunnittelu määrätyssä järjestyksessä tehtäville peltotöille usean peltotyökoneen yhteistyönä. Algoritmikehitystä ja testausta varten suunniteltiin yhtenäinen rajapinta, jolla algoritmia voitaisiin testata sekä simulaatiossa että todellisessa testitilanteessa. Algoritmikehityksessä käytettiin työkaluina Matlab, Simulink ja Visual Studio -ohjelmia. Työssä toteutettiin kaksi algoritmia, jotka perustuvat samaan ideaan: suunnitellaan kerrallaan kaksi lyhyttä samanaikaista polkua, jotka ajoitetaan reaaliajassa. Algoritmeja testattiin todellisessa testiympäristössä kahden työkoneen yhteistyönä, kun tavoitteena on kylvää koko testialue. Ensimmäinen työvaihe suoritettiin lautasmuokkaimella ja toinen kylvökoneella. Testiajot osoittavat, että diplomityössä kehitetyillä algoritmeilla voidaan ohjata kahden toisistaan riippuvaisen peltotyön toteutus samanaikaisesti samalla peltoalueella

    A review: On path planning strategies for navigation of mobile robot

    Get PDF
    This paper presents the rigorous study of mobile robot navigation techniques used so far. The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap. The classical approaches such as cell decomposition (CD), roadmap approach (RA), artificial potential field (APF); reactive approaches such as genetic algorithm (GA), fuzzy logic (FL), neural network (NN), firefly algorithm (FA), particle swarm optimization (PSO), ant colony optimization (ACO), bacterial foraging optimization (BFO), artificial bee colony (ABC), cuckoo search (CS), shuffled frog leaping algorithm (SFLA) and other miscellaneous algorithms (OMA) are considered for study. The navigation over static and dynamic condition is analyzed (for single and multiple robot systems) and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches. It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm. Hence, reactive approaches are more popular and widely used for path planning of mobile robot. The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics

    Coverage Path Planning Techniques for Inspection of Disjoint Regions with Precedence Provision

    Get PDF
    Recent times are witnessing an emergence of sites that are hazardous for human access. This has created a global demand to equip agents with the ability to autonomously inspect such environments by computing a coverage path effectively and efficiently. However, inspection of such sites requires agents to consider the correlation of work, providing precedence provision in visiting regions. The current approaches to compute coverage path in the hazardous sites, however, do not consider precedence provision. To this end, coverage path planning strategies are proposed, which provide precedence provision. To meet the challenges, the problem is divided into two phases: inter-region and intra-region path planning. In the ‘inter-region’ path planning of the approach, the site comprising of multiple disjoint regions is modelled as connectivity graph. Two novel approaches, Mixed Integer Linear Programming (MILP) solution and heuristic based techniques, are proposed to generate the ordered sequence of regions to be traversed. In the ‘intra-region’ path planning of the approach, each region is decomposed into a grid and Boustrophedon Motion is planned over each region. The ability of combined approach to provide complete coverage is proved under minor assumption. An investigative study has been conducted to elucidate the efficiency of the proposed approach in different scenarios using simulation experiments. The proposed approach is evaluated against baseline approaches. The results manifest a significant reduction in cost and execution time, which caters to inspection of target sites comprising of multiple disjoint regions with precedence provision
    corecore