10 research outputs found

    Intrinsic randomness in non-local theories: quantification and amplification

    Get PDF
    Quantum mechanics was developed as a response to the inadequacy of classical physics in explaining certain physical phenomena. While it has proved immensely successful, it also presents several features that severely challenge our classicality based intuition. Randomness in quantum theory is one such and is the central theme of this dissertation. Randomness is a notion we have an intuitive grasp on since it appears to abound in nature. It a icts weather systems and nancial markets and is explicitly used in sport and gambling. It is used in a wide range of scienti c applications such as the simulation of genetic drift, population dynamics and molecular motion in fluids. Randomness (or the lack of it) is also central to philosophical concerns such as the existence of free will and anthropocentric notions of ethics and morality. The conception of randomness has evolved dramatically along with physical theory. While all randomness in classical theory can be fully attributed to a lack of knowledge of the observer, quantum theory qualitatively departs by allowing the existence of objective or intrinsic randomness. It is now known that intrinsic randomness is a generic feature of hypothetical theories larger than quantum theory called the non-signalling theories. They are usually studied with regards to a potential future completion of quantum mechanics or from the perspective of recognizing new physical principles describing nature. While several aspects have been studied to date, there has been little work in globally characterizing and quantifying randomness in quantum and non-signalling theories and the relationship between them. This dissertation is an attempt to ll this gap. Beginning with the unavoidable assumption of a weak source of randomness in the universe, we characterize upper bounds on quantum and non-signalling randomness. We develop a simple symmetry argument that helps identify maximal randomness in quantum theory and demonstrate its use in several explicit examples. Furthermore, we show that maximal randomness is forbidden within general non-signalling theories and constitutes a quantitative departure from quantum theory. We next address (what was) an open question about randomness ampli cation. It is known that a single source of randomness cannot be ampli ed using classical resources alone. We show that using quantum resources on the other hand allows a full ampli cation of the weakest sources of randomness to maximal randomness even in the presence of supra-quantum adversaries. The signi cance of this result spans practical cryptographic scenarios as well as foundational concerns. It demonstrates that conditional on the smallest set of assumptions, the existence of the weakest randomness in the universe guarantees the existence of maximal randomness. The next question we address is the quanti cation of intrinsic randomness in non-signalling correlations. While this is intractable in general, we identify cases where this can be quanti ed. We nd that in these cases all observed randomness is intrinsic even relaxing the measurement independence assumption. We nally turn to the study of the only known resource that allows generating certi able intrinsic randomness in the laboratory i.e. entanglement. We address noisy quantum systems and calculate their entanglement dynamics under decoherence. We identify exact results for several realistic noise models and provide tight bounds in some other cases. We conclude by putting our results into perspective, pointing out some drawbacks and future avenues of work in addressing these concerns

    From quantum foundations to quantum information protocols and back

    Get PDF
    Physics has two main ambitions: to predict and to understand. Indeed, physics aims for the prediction of all natural phenomena. Prediction entails modeling the correlation between an action, the input, and what is subsequently observed, the output.Understanding, on the other hand, involves developing insightful principles and models that can explain the widest possible varietyof correlations present in nature. Remarkably, advances in both prediction and understanding foster our physical intuition and, as a consequence, novel and powerful applications are discovered. Quantum mechanics is a very successful physical theory both in terms of its predictive power as well as in its wide applicability. Nonetheless and despite many decades of development, we do not yet have a proper physical intuition of quantum phenomena. I believe that improvements in our understanding of quantum theory will yield better, and more innovative, protocols and vice versa.This dissertation aims at advancing our understanding and developing novel protocols. This is done through four approaches. The first one is to study quantum theory within a broad family of theories. In particular, we study quantum theory within the family of locally quantum theories. We found out that the principle that singles out quantum theory out of this family, thus connecting quantum local and nonlocal structure, is dynamical reversibility. This implies that the viability of large scale quantum computing can be based on concrete physical principles that can be experimentally tested at a local level without needing to test millions of qubits simultaneously. The second approach is to study quantum correlations from a black box perspective thus making as few assumptions as possible. The strategy is to study the completeness of quantum predictions by benchmarking them against alternative models. Three main results and applications come out of our study. Firstly, we prove that performing complete amplification of randomness starting from a source of arbitrarily weak randomness - a task that is impossible with classical resources - is indeed possible via nonlocality. This establishes in our opinion the strongest evidence for a truly random event in nature so far. Secondly, we prove that there exist finite events where quantum theory gives predictions as complete as any no-signaling theory can give, showing that the completeness of quantum theory is not an asymptotic property. Finally, we prove that maximally nonlocal theories can never be maximally random while quantum theory can, showing a trade-off between the nonlocality of a theory and its randomness capabilities. We also prove that quantum theory is not unique in this respect. The third approach we follow is to study quantum correlations in scenarios where some parties have a restriction on the available quantum degrees of freedom. The future progress of semi-device-independent quantum information depends crucially on our ability to bound the strength of these correlations. Here we provide a full characterization via a complete hierarchy of sets that approximate the target set from the outside. Each set can be in turn characterized using standard numerical techniques. One application of our work is certifying multidimensional entanglement device-independently.The fourth approach is to confront quantum theory with computer science principles. In particular, we establish two interesting implications for quantum theory results of raising the Church-Turing thesis to the level of postulate. Firstly, we show how different preparations of the same mixed state, indistinguishable according to the quantum postulates, become distinguishable when prepared computably. Secondly, we identify a new loophole for Bell-like experiments: if some parties in a Bell-like experiment use private pseudorandomness to choose their measurement inputs, the computational resources of an eavesdropper have to be limited to observe a proper violation of non locality.La física tiene dos finalidades: predecir y comprender. En efecto, la física aspira a poder predecir todos los fenómenos naturales. Predecir implica modelar correlaciones entre una acción y la reacción subsiguiente.Comprender, implica desarrollar leyes profundas que expliquen la más amplia gama de correlaciones presentes en la naturaleza. Avances tanto en la capacidad de predicción como en nuestra comprensión fomentan la intuición física y, como consecuencia, surgen nuevas y poderosas aplicaciones. La mecánica cuántica es una teoría física de enorme éxito por su capacidad de predicción y amplia aplicabilidad.Sin embargo, a pesar de décadas de gran desarrollo, no poseemos una intuición física satisfactoria de los fenómenos cuánticos.Creo que mejoras en nuestra comprensión de la teoría cuántica traerán consigo mejores y más innovadores protocolos y vice versa.Ésta tesis doctoral trata simultáneamente de avanzar nuestra comprensión y de desarrollar nuevos protocolos mediante cuatro enfoques distintos.El primero consiste en estudiar la mecánica cuántica como miembro de una familia de teorías: las teorías localmente cuánticas. Probamos que el principio que selecciona a la mecánica cuántica, conectando por tanto la estructura cuántica local y no local, es la reversibilidad de su dinámica.Ésto implica que la viabilidad de la computación cuántica a gran escala puede ser estudiada de manera local, comprobando experimentalmente ciertos principios físicos. El segundo enfoque consiste en estudiar las correlaciones cuánticas desde una perspectiva de 'caja negra', haciendo así el mínimo de asunciones físicas. La estrategia consiste en estudiar la completitud de las predicciones cuánticas, comparándolas con todos los modelos alternativos. Hemos obtenido tres grandes resultados. Primero, probamos que se puede amplificar completamente la aleatoriedad de una fuente de aleatoriedad arbitrariamente débil.Ésta tarea, imposible mediante recursos puramente clásicos, se vuelve factible gracias a la no localidad. Ésto establece a nuestro parecer la evidencia más fuerte de la existencia de eventos totalmente impredecibles en la naturaleza. Segundo, probamos que existen eventos finitos cuyas predicciones cuánticas son tan completas como permite el principio de 'no signaling'. Ésto prueba que la completitud de la mecánica cuántica no es una propiedad asintótica. Finalmente, probamos que las teorías máximamente no locales no pueden ser máximamente aleatorias, mientras que la mecánica cuántica lo es. Ésto muestra que hay una compensación entre la no localidad de una teoría y su capacidad para generar aleatoriedad. También probamos que la mecánica cuántica no es única en éste respecto. En tercer lugar, estudiamos las correlaciones cuánticas en escenarios dónde algunas partes tienen restricciones en el número de grados de libertad cuánticos accesibles. Éste escenario se denomina 'semi-device-independent'. Aquí encontramos una caracterización completa de éstas correlaciones mediante una jerarquía de conjuntos que aproximan al conjunto buscado desde fuera y que pueden ser caracterizados a su vez mediante técnicas numéricas estandar. Un aplicación de nuestro trabajo es la certificación de entrelazamiento multidimensional de manera 'device-independent'. El cuarto y último enfoque consiste en enfrentar a la mecánica cuántica con principios provenientes de la computación. En particular, establecemos dos implicaciones para la mecánica cuántica de elevar la tesis de Church-Turing al nivel de postulado. Primero, mostramos que diferentes preparaciones de un mismo estado mixto, indistinguibles de acuerdo a los axiomas cuánticos, devienen distinguibles cuando son preparados de manera computable. Segundo, identificamos un nuevo 'loophole' en experimentos de Bell: si algunas partes en un experimento de Bell usan pseudo aleatoriedad para escoger sus medidas, los recursos computacionales de un espía deben ser limitados a fin de observar verdaderamente la no localidad

    Informatique quantique : algorithmes et complexité de la communication

    Full text link
    Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Characterizing entanglement and quantum correlations constrained by symmetry

    Get PDF
    Entanglement and nonlocal correlations constitute two fundamental resources for quantum information processing, as they allow for novel tasks that are otherwise impossible in a classical scenario. However, their elusive characterization is still a central problem in Quantum Information Theory. The main reason why such a fundamental issue remains a formidable challenge lies in the exponential growth in complexity of the Hilbert space, as well as the space of nonlocal correlations. Physical systems of interest, on the other hand, display symmetries that can be exploited to reduce this complexity, opening the possibility that, for such systems, some of these questions become tractable. This PhD Thesis is dedicated to the study and characterization of entanglement and nonlocal correlations constrained under symmetries. It contains original results in these four threads of research: PPT entanglement in the symmetric states, nonlocality detection in many-body systems, the non-equivalence between entanglement and nonlocality and elemental monogamies of correlations. First, we study PPT entanglement in fully symmetric n-qubit states. We solve the open question on the existence of four-qubit PPT entangled states of these kind, providing constructive examples and methods. Furthermore, we develop criteria for separability, edgeness and the Schmidt number of PPT entangled symmetric states. Geometrically, we focus on the characterization of extremal states of this family and we provide an algorithm to find states with such properties. Second, we study nonlocality in many-body systems. We consider permutationally and translationally invariant Bell inequalities consisting of two-body correlators. These constitute the first tools to detect nonlocality in many-body systems in an experimentally friendly way with our current technology. Furthermore, we show how these Bell inequalities detect nonlocality in physically relevant systems such as ground states of Hamiltonians that naturally arise e.g., in nuclear physics. We provide analytical classes of Bell inequalities and we analytically characterize which states and measurements are best suited for them. We show that the method we introduce can be fully generalized to correlators of any order in any Bell scenario. Finally, we provide some feedback from a more experimental point of view. Third, we demonstrate that entanglement and nonlocality are inequivalent concepts in general; a question that remained open in the multipartite case. We show that the strongest form of entanglement, genuinely multipartite entanglement, does not imply the strongest form of nonlocality, genuinely multipartite nonlocality, in any case. We give a constructive method that, starting from a multipartite genuinely multipartite state admitting a K-local model, extends it to a genuinely multipartite entangled state of any number of parties while preserving the degree of locality. Finally, we show that nonlocal correlations are monogamous in a much stronger sense than the typical one, in which the figure of merit compares a Bell inequality violation between two sets of parties. We show that the amount of Bell violation that a set of parties observes limits the knowledge that any external observer may gain on any of the outcomes of any of the parties performing the Bell experiment. We show that this holds even if such observer is not limited by quantum physics, but it only obeys the no-signalling principle. Apart from its fundamental interest, we show how these stronger monogamy relations boost the performance of some device-independent (DI) protocols such as DI quantum key distribution or DI randomness amplification.El entrelazamiento y las correlaciones no-locales constituyen dos recursos fundamentales para el procesamiento cuántico de la información, ya que abren la posibilidad de realizar tareas que serían imposibles en el sentido clásico. Sin embargo, su elusiva caracterización aún representa uno de los problemas más importantes en la teoría cuántica de la información. La razón principal por la que una cuestión tan básica sigue siendo un reto formidable subyace en el incremento exponencial de la complejidad del espacio de Hilbert, así como del espacio de las correlaciones no-locales. Por otro lado, los sistemas físicos de interés muestran simetrías que pueden ser aprovechadas para reducir dicha complejidad, abriendo la posibilidad que, para tales sistemas, algunas de esas cuestiones devengan tratables. La presente tesis doctoral está enfocada al estudio de la caracterización del entrelazamiento cuántico y las correlaciones no-locales bajo simetrías. Contiene resultados originales en las siguientes líneas de investigación: entrelazamiento del tipo PPT en estados simétricos, detección de no-localidad en sistemas de muchos cuerpos, la no equivalencia entre el entrelazamiento cuántico y la no-localidad y las correlaciones monogámicas elementales. En primer lugar, estudiamos el entrelazamiento del tipo PPT en estados totalmente simétricos de n bits cuánticos. Resolvemos el problema abierto referente a la existencia de estados PPT entrelazados de cuatro bits cuánticos de este tipo, proporcionando ejemplos y métodos constructivos. Además, desarrollamos criterios de separabilidad, estados frontera y número de Schmidt para estados PPT entrelazados y simétricos. Nos centramos en la caracterización de estados extremos dentro de esta familia y proporcionamos un algoritmo para encontrar estados cuánticos con tales propiedades. En segundo lugar, estudiamos la no-localidad en sistemas de muchos cuerpos. Consideramos desigualdades de Bell, invariantes bajo permutaciones o traslaciones, que involucran correladores entre dos cuerpos como mucho. Dichas desigualdades constituyen los primeros tests de detección de no-localidad en sistemas de muchos cuerpos que son accesibles experimentalmente, con el presente nivel de tecnología. Además, demostramos cómo esas desigualdades de Bell pueden detectar no-localidad en estados físicamente relevantes, como los estados de mínima energía de hamiltonianos que aparecen en física nuclear. Proporcionamos clases analíticas de desigualdades de Bell y caracterizamos, también analíticamente, qué estados y medidas son los más adecuados para ellas. Vemos que el método que introducimos es generalizable a cualquier escenario de Bell. Finalmente, comentamos aspectos de interés desde un punto de vista experimental. En tercer lugar, demostramos que el entrelazamiento y las correlaciones no-locales son conceptos no equivalentes en general, resolviendo un problema que persistía abierto en el caso multipartito. Probamos que la forma más fuerte de entrelazamiento no implica la forma más fuerte de no-localidad en ningún caso. Para ello, damos un método constructivo que, dado un estado cuántico multipartito genuinamente entrelazado que admite un modelo K-local, lo extiende a un estado consistente en un número de subsistemas arbitrario, genuinamente entrelazado, preservando el mismo grado de localidad. Finalmente, demostramos que las correlaciones no-locales son monógamas en un sentido mucho más estricto que el que se considera típicamente. Vemos que la cantidad de violación que un conjunto de observadores mide impone restricciones fundamentales en la información que puede obtener cualquier observador externo, resultado que se mantiene asumiendo sólo la imposibilidad de transmisión instantánea de la información. Demostramos su aplicación en protocolos cuánticos independientes del dispositivo (ID) tales como la distribución cuántica de llaves ID o bien la amplificación de aleatoriedad ID
    corecore