2,702 research outputs found

    Design, development and use of the finite element machine

    Get PDF
    Some of the considerations that went into the design of the Finite Element Machine, a research asynchronous parallel computer are described. The present status of the system is also discussed along with some indication of the type of results that were obtained

    Algorithms for Stable Matching and Clustering in a Grid

    Full text link
    We study a discrete version of a geometric stable marriage problem originally proposed in a continuous setting by Hoffman, Holroyd, and Peres, in which points in the plane are stably matched to cluster centers, as prioritized by their distances, so that each cluster center is apportioned a set of points of equal area. We show that, for a discretization of the problem to an n×nn\times n grid of pixels with kk centers, the problem can be solved in time O(n2log5n)O(n^2 \log^5 n), and we experiment with two slower but more practical algorithms and a hybrid method that switches from one of these algorithms to the other to gain greater efficiency than either algorithm alone. We also show how to combine geometric stable matchings with a kk-means clustering algorithm, so as to provide a geometric political-districting algorithm that views distance in economic terms, and we experiment with weighted versions of stable kk-means in order to improve the connectivity of the resulting clusters.Comment: 23 pages, 12 figures. To appear (without the appendices) at the 18th International Workshop on Combinatorial Image Analysis, June 19-21, 2017, Plovdiv, Bulgari

    Separation of pulsar signals from noise with supervised machine learning algorithms

    Full text link
    We evaluate the performance of four different machine learning (ML) algorithms: an Artificial Neural Network Multi-Layer Perceptron (ANN MLP ), Adaboost, Gradient Boosting Classifier (GBC), XGBoost, for the separation of pulsars from radio frequency interference (RFI) and other sources of noise, using a dataset obtained from the post-processing of a pulsar search pi peline. This dataset was previously used for cross-validation of the SPINN-based machine learning engine, used for the reprocessing of HTRU-S survey data arXiv:1406.3627. We have used Synthetic Minority Over-sampling Technique (SMOTE) to deal with high class imbalance in the dataset. We report a variety of quality scores from all four of these algorithms on both the non-SMOTE and SMOTE datasets. For all the above ML methods, we report high accuracy and G-mean in both the non-SMOTE and SMOTE cases. We study the feature importances using Adaboost, GBC, and XGBoost and also from the minimum Redundancy Maximum Relevance approach to report algorithm-agnostic feature ranking. From these methods, we find that the signal to noise of the folded profile to be the best feature. We find that all the ML algorithms report FPRs about an order of magnitude lower than the corresponding FPRs obtained in arXiv:1406.3627, for the same recall value.Comment: 14 pages, 2 figures. Accepted for publication in Astronomy and Computin

    Algorithms for Triangles, Cones & Peaks

    Get PDF
    Three different geometric objects are at the center of this dissertation: triangles, cones and peaks. In computational geometry, triangles are the most basic shape for planar subdivisions. Particularly, Delaunay triangulations are a widely used for manifold applications in engineering, geographic information systems, telecommunication networks, etc. We present two novel parallel algorithms to construct the Delaunay triangulation of a given point set. Yao graphs are geometric spanners that connect each point of a given set to its nearest neighbor in each of kk cones drawn around it. They are used to aid the construction of Euclidean minimum spanning trees or in wireless networks for topology control and routing. We present the first implementation of an optimal O(nlogn)\mathcal{O}(n \log n)-time sweepline algorithm to construct Yao graphs. One metric to quantify the importance of a mountain peak is its isolation. Isolation measures the distance between a peak and the closest point of higher elevation. Computing this metric from high-resolution digital elevation models (DEMs) requires efficient algorithms. We present a novel sweep-plane algorithm that can calculate the isolation of all peaks on Earth in mere minutes

    Parallel algorithms for the construction of special subgraphs

    Get PDF

    Understanding Disordered Systems Through Numerical Simulation and Algorithm Development

    Get PDF
    Disordered systems arise in many physical contexts. Not all matter is uni- form, and impurities or heterogeneities can be modeled by fixed random disor- der. Numerous complex networks also possess fixed disorder, leading to appli- cations in transportation systems [1], telecommunications [2], social networks [3, 4], and epidemic modeling [5], to name a few. Due to their random nature and power law critical behavior, disordered systems are difficult to study analytically. Numerical simulation can help overcome this hurdle by allowing for the rapid computation of system states. In order to get precise statistics and extrapolate to the thermodynamic limit, large systems must be studied over many realizations. Thus, innovative al- gorithm development is essential in order reduce memory or running time requirements of simulations. This thesis presents a review of disordered systems, as well as a thorough study of two particular systems through numerical simulation, algorithm de- velopment and optimization, and careful statistical analysis of scaling proper- ties. Chapter 1 provides a thorough overview of disordered systems, the his- tory of their study in the physics community, and the development of tech- niques used to study them. Topics of quenched disorder, phase transitions, the renormalization group, criticality, and scale invariance are discussed. Several prominent models of disordered systems are also explained. Lastly, analysis techniques used in studying disordered systems are covered. In Chapter 2, minimal spanning trees on critical percolation clusters are studied, motivated in part by an analytic perturbation expansion by Jackson and Read [6] that I check against numerical calculations. This system has a direct mapping to the ground state of the strongly disordered spin glass [7]. We compute the path length fractal dimension of these trees in dimensions d = {2, 3, 4, 5} and find our results to be compatible with the analytic results suggested by Jackson and Read. In Chapter 3, the random bond Ising ferromagnet is studied, which is es- pecially useful since it serves as a prototype for more complicated disordered systems such as the random field Ising model and spin glasses. We investigate the effect that changing boundary spins has on the locations of domain walls in the interior of the random ferromagnet system. We provide an analytic proof that ground state domain walls in the two dimensional system are de- composable, and we map these domain walls to a shortest paths problem. By implementing a multiple-source shortest paths algorithm developed by Philip Klein [8], we are able to efficiently probe domain wall locations for all possible configurations of boundary spins. We consider lattices with uncorrelated dis- order, as well as disorder that is spatially correlated according to a power law. We present numerical results for the scaling exponent governing the probabil- ity that a domain wall can be induced that passes through a particular location in the system’s interior, and we compare these results to previous results on the directed polymer problem

    Fractal and Multifractal Scaling of Electrical Conduction in Random Resistor Networks

    Full text link
    This article is a mini-review about electrical current flows in networks from the perspective of statistical physics. We briefly discuss analytical methods to solve the conductance of an arbitrary resistor network. We then turn to basic results related to percolation: namely, the conduction properties of a large random resistor network as the fraction of resistors is varied. We focus on how the conductance of such a network vanishes as the percolation threshold is approached from above. We also discuss the more microscopic current distribution within each resistor of a large network. At the percolation threshold, this distribution is multifractal in that all moments of this distribution have independent scaling properties. We will discuss the meaning of multifractal scaling and its implications for current flows in networks, especially the largest current in the network. Finally, we discuss the relation between resistor networks and random walks and show how the classic phenomena of recurrence and transience of random walks are simply related to the conductance of a corresponding electrical network.Comment: 27 pages & 10 figures; review article for the Encyclopedia of Complexity and System Science (Springer Science
    corecore