283 research outputs found

    Complete axiomatization for the total variation distance of Markov chains

    Get PDF
    We propose a complete axiomatization for the total variation distance of finite labelled Markov chains. Our axiomatization is given in the form of a quantitative deduction system, a framework recently proposed by Mardare, Panangaden, and Plotkin (LICS 2016) to extend classical equational deduction systems by means of inferences of equality relations t≡εs indexed by rationals, expressing that “t is approximately equal to s up to an error ε”. Notably, the quantitative equational system is obtained by extending our previous axiomatization (CONCUR 2016) for the probabilistic bisimilarity distance with a distributivity axiom for the prefix operator over the probabilistic choice inspired by Rabinovich's (MFPS 1983). Finally, we propose a metric extension to the Kleene-style representation theorem for finite labelled Markov chains w.r.t. trace equivalence due to Silva and Sokolova (MFPS 2011)

    Complete Axiomatization for the Bisimilarity Distance on Markov Chains

    Get PDF
    In this paper we propose a complete axiomatization of the bisimilarity distance of Desharnais et al. for the class of finite labelled Markov chains. Our axiomatization is given in the style of a quantitative extension of equational logic recently proposed by Mardare, Panangaden, and Plotkin (LICS\u2716) that uses equality relations t =_e s indexed by rationals, expressing that "t is approximately equal to s up to an error e". Notably, our quantitative deductive system extends in a natural way the equational system for probabilistic bisimilarity given by Stark and Smolka by introducing an axiom for dealing with the Kantorovich distance between probability distributions

    A complete quantitative deduction system for the bisimilarity distance on Markov chains

    Get PDF
    In this paper we propose a complete axiomatization of the bisimilarity distance of Desharnais et al. for the class of finite labelled Markov chains. Our axiomatization is given in the style of a quantitative extension of equational logic recently proposed by Mardare, Panangaden, and Plotkin (LICS 2016) that uses equality relations t ≡ ε s indexed by rationals, expressing that “t is approximately equal to s up to an error ε”. Notably, our quantitative deduction system extends in a natural way the equational system for probabilistic bisimilarity given by Stark and Smolka by introducing an axiom for dealing with the Kantorovich distance between probability distributions. The axiomatization is then used to propose a metric extension of a Kleene’s style representation theorem for finite labelled Markov chains, that was proposed (in a more general coalgebraic fashion) by Silva et al. (Inf. Comput. 2011)

    Sequential Deliberation for Social Choice

    Full text link
    In large scale collective decision making, social choice is a normative study of how one ought to design a protocol for reaching consensus. However, in instances where the underlying decision space is too large or complex for ordinal voting, standard voting methods of social choice may be impractical. How then can we design a mechanism - preferably decentralized, simple, scalable, and not requiring any special knowledge of the decision space - to reach consensus? We propose sequential deliberation as a natural solution to this problem. In this iterative method, successive pairs of agents bargain over the decision space using the previous decision as a disagreement alternative. We describe the general method and analyze the quality of its outcome when the space of preferences define a median graph. We show that sequential deliberation finds a 1.208- approximation to the optimal social cost on such graphs, coming very close to this value with only a small constant number of agents sampled from the population. We also show lower bounds on simpler classes of mechanisms to justify our design choices. We further show that sequential deliberation is ex-post Pareto efficient and has truthful reporting as an equilibrium of the induced extensive form game. We finally show that for general metric spaces, the second moment of of the distribution of social cost of the outcomes produced by sequential deliberation is also bounded

    Perencanaan Analisa Pemeliharaan Mesin Menggunakan Pendekatan Markov Chain di PT. Cardsindo Tiga Perkasa

    Get PDF
    Telah dilakukan penelitian tentang perencanaan analisa pemeliharaan mesin menggunakan pendekatan markov chain, untuk dmengurangi biaya perbaikan mesin dengan meinimalkan breakdown pada mesin atau peralatan di PT. Cardsindo Tiga Perkasa. Metode ini juga dapat menganalisa kejadian diwaktu yang akan datang secara matematis. Pada type mesin A yang berjumlah 2 mesin, diperlukan waktu 40 menit, untuk type mesin B yang berjumlah 4 mesin memerlukan 80 menit, dan pada type mesin C yang berjumlah 3 mesin memerlukan waktu sekitar 45 menit untuk tindakan perbaikan dalam satu bulan. Dapat disimpulkan bahwa penelitian dengan menggunakan metode markov chain didapatkan biaya penghematan untuk jenis mesin type A sebesar 44 % dari cost pemeliharana sebelumnya, kemudian untuk meisn type B sebesar 69 %, dan untuk type mesin C sebesar 29 % dari biaya maintenance perusahaan

    Behavioural Preorders on Stochastic Systems - Logical, Topological, and Computational Aspects

    Get PDF
    Computer systems can be found everywhere: in space, in our homes, in our cars, in our pockets, and sometimes even in our own bodies. For concerns of safety, economy, and convenience, it is important that such systems work correctly. However, it is a notoriously difficult task to ensure that the software running on computers behaves correctly. One approach to ease this task is that of model checking, where a model of the system is made using some mathematical formalism. Requirements expressed in a formal language can then be verified against the model in order to give guarantees that the model satisfies the requirements. For many computer systems, time is an important factor. As such, we need our formalisms and requirement languages to be able to incorporate real time. We therefore develop formalisms and algorithms that allow us to compare and express properties about real-time systems. We first introduce a logical formalism for reasoning about upper and lower bounds on time, and study the properties of this formalism, including axiomatisation and algorithms for checking when a formula is satisfied. We then consider the question of when a system is faster than another system. We show that this is a difficult question which can not be answered in general, but we identify special cases where this question can be answered. We also show that under this notion of faster-than, a local increase in speed may lead to a global decrease in speed, and we take step towards avoiding this. Finally, we consider how to compare the real-time behaviour of systems not just qualitatively, but also quantitatively. Thus, we are interested in knowing how much one system is faster or slower than another system. This is done by introducing a distance between systems. We show how to compute this distance and that it behaves well with respect to certain properties.Comment: PhD dissertation from Aalborg Universit

    Behavioural Preorders on Stochastic Systems - Logical, Topological, and Computational Aspects

    Get PDF
    corecore