118 research outputs found

    Partially Ordered Two-way B\"uchi Automata

    Full text link
    We introduce partially ordered two-way B\"uchi automata and characterize their expressive power in terms of fragments of first-order logic FO[<]. Partially ordered two-way B\"uchi automata are B\"uchi automata which can change the direction in which the input is processed with the constraint that whenever a state is left, it is never re-entered again. Nondeterministic partially ordered two-way B\"uchi automata coincide with the first-order fragment Sigma2. Our main contribution is that deterministic partially ordered two-way B\"uchi automata are expressively complete for the first-order fragment Delta2. As an intermediate step, we show that deterministic partially ordered two-way B\"uchi automata are effectively closed under Boolean operations. A small model property yields coNP-completeness of the emptiness problem and the inclusion problem for deterministic partially ordered two-way B\"uchi automata.Comment: The results of this paper were presented at CIAA 2010; University of Stuttgart, Computer Scienc

    Using automata to characterise fixed point temporal logics

    Get PDF
    This work examines propositional fixed point temporal and modal logics called mu-calculi and their relationship to automata on infinite strings and trees. We use correspondences between formulae and automata to explore definability in mu-calculi and their fragments, to provide normal forms for formulae, and to prove completeness of axiomatisations. The study of such methods for describing infinitary languages is of fundamental importance to the areas of computer science dealing with non-terminating computations, in particular to the specification and verification of concurrent and reactive systems. To emphasise the close relationship between formulae of mu-calculi and alternating automata, we introduce a new first recurrence acceptance condition for automata, checking intuitively whether the first infinitely often occurring state in a run is accepting. Alternating first recurrence automata can be identified with mu-calculus formulae, and ordinary, non-alternating first recurrence automata with formulae in a particular normal form, the strongly aconjunctive form. Automata with more traditional BĂŒchi and Rabin acceptance conditions can be easily unwound to first recurrence automata, i.e. to mu-calculus formulae. In the other direction, we describe a powerset operation for automata that corresponds to fixpoints, allowing us to translate formulae inductively to ordinary BĂŒchi and Rabin-automata. These translations give easy proofs of the facts that Rabin-automata, the full mu-calculus, its strongly aconjunctive fragment and the monadic second-order calculus of n successors SnS are all equiexpressive, that BĂŒchi-automata, the fixpoint alternation class Pi_2 and the strongly aconjunctive fragment of Pi_2 are similarly related, and that the weak SnS and the fixpoint-alternation-free fragment of mu-calculus also coincide. As corollaries we obtain Rabin's complementation lemma and the powerful decidability result of SnS. We then describe a direct tableau decision method for modal and linear-time mu-calculi, based on the notion of definition trees. The tableaux can be interpreted as first recurrence automata, so the construction can also be viewed as a transformation to the strongly aconjunctive normal form. Finally, we present solutions to two open axiomatisation problems, for the linear-time mu-calculus and its extension with path quantifiers. Both completeness proofs are based on transforming formulae to normal forms inspired by automata. In extending the completeness result of the linear-time mu-calculus to the version with path quantifiers, the essential problem is capturing the limit closure property of paths in an axiomatisation. To this purpose, we introduce a new \exists\nu-induction inference rule

    Generalized Data Automata and Fixpoint Logic

    Get PDF
    Data ω-words are ω-words where each position is additionally labelled by a data value from an infinite alphabet. They can be seen as graphs equipped with two sorts of edges: ‘next position’ and ‘next position with the same data value’. Based on this view, an extension of Data Automata called Generalized Data Automata (GDA) is introduced. While the decidability of emptiness of GDA is open, the decidability for a subclass class called BĂŒchi GDA is shown using Multicounter Automata. Next a natural fixpoint logic is defined on the graphs of data ω-words and it is shown that the ”-fragment as well as the alternation-free fragment is undecidable. But the fragment which is defined by limiting the number of alternations between future and past formulas is shown to be decidable, by first converting the formulas to equivalent alternating BĂŒchi automata and then to BĂŒchi GDA

    Emptiness Of Alternating Tree Automata Using Games With Imperfect Information

    Get PDF
    We consider the emptiness problem for alternating tree automata, with two acceptance semantics: classical (all branches are accepted) and qualitative (almost all branches are accepted). For the classical semantics, the usual technique to tackle this problem relies on a Simulation Theorem which constructs an equivalent non-deterministic automaton from the original alternating one, and then checks emptiness by a reduction to a two-player perfect information game. However, for the qualitative semantics, no simulation of alternation by means of non-determinism is known. We give an alternative technique to decide the emptiness problem of alternating tree automata, that does not rely on a Simulation Theorem. Indeed, we directly reduce the emptiness problem to solving an imperfect information two-player parity game. Our new approach can successfully be applied to both semantics, and yields decidability results with optimal complexity; for the qualitative semantics, the key ingredient in the proof is a positionality result for stochastic games played over infinite graphs

    A Temporal Logic for Hyperproperties

    Full text link
    Hyperproperties, as introduced by Clarkson and Schneider, characterize the correctness of a computer program as a condition on its set of computation paths. Standard temporal logics can only refer to a single path at a time, and therefore cannot express many hyperproperties of interest, including noninterference and other important properties in security and coding theory. In this paper, we investigate an extension of temporal logic with explicit path variables. We show that the quantification over paths naturally subsumes other extensions of temporal logic with operators for information flow and knowledge. The model checking problem for temporal logic with path quantification is decidable. For alternation depth 1, the complexity is PSPACE in the length of the formula and NLOGSPACE in the size of the system, as for linear-time temporal logic

    Rabin vs. Streett Automata

    Get PDF
    The Rabin and Streett acceptance conditions are dual. Accordingly, deterministic Rabin and Streett automata are dual. Yet, when adding nondeterminsim, the picture changes dramatically. In fact, the state blowup involved in translations between Rabin and Streett automata is a longstanding open problem, having an exponential gap between the known lower and upper bounds. We resolve the problem, showing that the translation of Streett to Rabin automata involves a state blowup in Theta(n2)Theta(n^2), whereas in the other direction, the translations of both deterministic and nondeterministic Rabin automata to nondeterministic Streett automata involve a state blowup in 2Theta(n)2^{Theta(n)}. Analyzing this substantial difference between the two directions, we get to the conclusion that when studying translations between automata, one should not only consider the state blowup, but also the emph{size} blowup, where the latter takes into account all of the automaton elements. More precisely, the size of an automaton is defined to be the maximum of the alphabet length, the number of states, the number of transitions, and the acceptance condition length (index). Indeed, size-wise, the results are opposite. That is, the translation of Rabin to Streett involves a size blowup in Theta(n2)Theta(n^2) and of Streett to Rabin in 2Theta(n)2^{Theta(n)}. The core difference between state blowup and size blowup stems from the tradeoff between the index and the number of states. (Recall that the index of Rabin and Streett automata might be exponential in the number of states.) We continue with resolving the open problem of translating deterministic Rabin and Streett automata to the weaker types of deterministic co-B"uchi and B"uchi automata, respectively. We show that the state blowup involved in these translations, when possible, is in 2Theta(n)2^{Theta(n)}, whereas the size blowup is in Theta(n2)Theta(n^2)

    VLDL Satisfiability and Model Checking via Tree Automata

    Get PDF
    We present novel algorithms solving the satisfiability problem and the model checking problem for Visibly Linear Dynamic Logic (VLDL) in asymptotically optimal time via a reduction to the emptiness problem for tree automata with B\"uchi acceptance. Since VLDL allows for the specification of important properties of recursive systems, this reduction enables the efficient analysis of such systems. Furthermore, as the problem of tree automata emptiness is well-studied, this reduction enables leveraging the mature algorithms and tools for that problem in order to solve the satisfiability problem and the model checking problem for VLDL.Comment: 14 page

    On the (In)Succinctness of Muller Automata

    Get PDF
    There are several types of finite automata on infinite words, differing in their acceptance conditions. As each type has its own advantages, there is an extensive research on the size blowup involved in translating one automaton type to another. Of special interest is the Muller type, providing the most detailed acceptance condition. It turns out that there is inconsistency and incompleteness in the literature results regarding the translations to and from Muller automata. Considering the automaton size, some results take into account, in addition to the number of states, the alphabet length and the number of transitions while ignoring the length of the acceptance condition, whereas other results consider the length of the acceptance condition while ignoring the two other parameters. We establish a full picture of the translations to and from Muller automata, enhancing known results and adding new ones. Overall, Muller automata can be considered less succinct than parity, Rabin, and Streett automata: translating nondeterministic Muller automata to the other nondeterministic types involves a polynomial size blowup, while the other way round is exponential; translating between the deterministic versions is exponential in both directions; and translating nondeterministic automata of all types to deterministic Muller automata is doubly exponential, as opposed to a single exponent in the translations to the other deterministic types

    On the Succinctness of Alternating Parity Good-For-Games Automata

    Get PDF
    We study alternating parity good-for-games (GFG) automata, i.e., alternating parity automata where both conjunctive and disjunctive choices can be resolved in an online manner, without knowledge of the suffix of the input word still to be read. We show that they can be exponentially more succinct than both their nondeterministic and universal counterparts. Furthermore, we present a single exponential determinisation procedure and an Exptime upper bound to the problem of recognising whether an alternating automaton is GFG. We also study the complexity of deciding "half-GFGness", a property specific to alternating automata that only requires nondeterministic choices to be resolved in an online manner. We show that this problem is PSpace-hard already for alternating automata on finite words
    • 

    corecore