9,701 research outputs found

    Genes in the postgenomic era

    Get PDF
    We outline three very different concepts of the gene - 'instrumental', 'nominal', and 'postgenomic'. The instrumental gene has a critical role in the construction and interpretation of experiments in which the relationship between genotype and phenotype is explored via hybridization between organisms or directly between nucleic acid molecules. It also plays an important theoretical role in the foundations of disciplines such as quantitative genetics and population genetics. The nominal gene is a critical practical tool, allowing stable communication between bioscientists in a wide range of fields grounded in well-defined sequences of nucleotides, but this concept does not embody major theoretical insights into genome structure or function. The post-genomic gene embodies the continuing project of understanding how genome structure supports genome function, but with a deflationary picture of the gene as a structural unit. This final concept of the gene poses a significant challenge to conventional assumptions about the relationship between genome structure and function, and between genotype and phenotype

    T-ALL and thymocytes : a message of noncoding RNAs

    Get PDF
    In the last decade, the role for noncoding RNAs in disease was clearly established, starting with microRNAs and later expanded towards long noncoding RNAs. This was also the case for T cell acute lymphoblastic leukemia, which is a malignant blood disorder arising from oncogenic events during normal T cell development in the thymus. By studying the transcriptomic profile of protein-coding genes, several oncogenic events leading to T cell acute lymphoblastic leukemia (T-ALL) could be identified. In recent years, it became apparent that several of these oncogenes function via microRNAs and long noncoding RNAs. In this review, we give a detailed overview of the studies that describe the noncoding RNAome in T-ALL oncogenesis and normal T cell development

    Candidate Germline Genetic Variants for Familial Colorectal Cancer Type X

    Get PDF
    Familial colorectal cancer type X (FCCTX) defines families that fulfill the Amsterdam criteria without evidence of defects in the DNA mismatch repair (MMR) genes and whose tumors do not present microsatellite instability. However, its genetic etiology remains unknown, therefore this study aimed to identify and evaluate novel variants and candidate genes that may play a role in FCCTX susceptibility. Based on a previous whole exome sequencing (WES) study in a FCCTX family, a bioinformatic analysis and a subsequent in silico and segregation studies were conducted to identify candidate genes and/or specific variants that may predispose for this syndrome. Since this analysis was already started, variants in 6 genes have already been identified to segregate with the disease. Therefore, the aim of this project was to continue this work by completing the selection of candidate variants and to characterize and try to clarify the role of these variants for FCCTX susceptibility. In order to elucidate the possible contribution of the corresponding genes for FCCTX, a mutational analysis was performed to search for germline mutations in index patients from FCCTX and FCCTX-like families. In addition, using the WES data, a copy number variation (CNV) analysis was also performed for the family subjected to WES, followed by a bioinformatic and in silico analysis to reveal amplicon deletions that may segregate with disease. It was also evaluated the involvement of the TPP2 gene, previously identified as a possible candidate gene for FCCTX in another family, in healthy and affected FCCTX patients, by mutational/splicing analysis, relative quantification by quantitative PCR and protein truncation test to assess resulting truncating proteins. The bioinformatic followed by in silico and segregation analysis of the variants obtained from WES, revealed 1 variant in the CACNA1S gene that segregated with the disease. Adding this variant to the already obtained, a total of 7 variants in different genes were found as possible contributors to FCCTX in this family. The segregation analysis also revealed the segregation of the previously identified MTMR3 and TAS1R1 variants in a patient from an older generation of the family. The CNV analysis revealed, after selective criteria, 22 amplicons of interest with a deletion scenario, for further segregation studies. The germline mutational analysis in a set of FCCTX and FCCTX-like families uncovered 2 and 3 potentially pathogenic variants for the MTMR3 and TAS1R1 genes, respectively. One of the variants found in MTMR3 was the same found in the WES analysis. Thus far no relevant variants were observed for LGR6 and DUSP12, however this analysis is not completed. The TPP2 study revealed the presence of non-described splicing isoforms. One of these isoforms exhibited a differential expression between healthy and affected individuals and the protein truncation test revealed that this alternative transcript gives rise to a truncated protein. In conclusion, the identification of more than one genetic variant appears to agree with the suggestion that FCCTX is a heterogeneous entity and the discovery of potentially pathogenic variants in MTMR3 and TAS1R1 reinforce their possible involvement in FCCTX. The alternative TPP2 transcript appears to be involved in the earlier stages of colorectal carcinogenesisO cancro do cólon e reto familiar do tipo X (FCCTX) define as famílias que preenchem os critérios de Amesterdão nas quais não é identificada mutação germinal nos genes de reparação de erros de DNA do tipo mismatch (MMR) e cujos tumores não apresentam instabilidade de microssatélites. Sendo a sua causa molecular desconhecida. Assim, o presente estudo teve como objetivo identificar e avaliar novas variantes e genes candidatos que possam estar envolvidos na suscetibilidade para o FCCTX. Com base num estudo prévio de whole exome sequencing (WES), realizado numa família FCCTX, foi efetuada uma análise bioinformática e in silico e um subsequente estudo de segregação, de modo a identificar genes candidatos e/ou variantes específicas que possam predispor para esta condição hereditária. Uma vez que esta análise já tinha sido iniciada, 6 variantes em diferentes genes, que segregaram com a doença, já tinham sido identificadas. Assim, o objetivo deste trabalho consistiu na continuação deste estudo, completando a seleção das variantes candidatas, e na caracterização e clarificação destas variantes para a suscetibilidade para o FCCTX. De modo a elucidar a possível contribuição destes genes para o FCCTX, foi realizada uma análise mutacional em indivíduos index de famílias FCCTX e potenciais famílias FCCTX. Adicionalmente, utilizando os resultados da WES, foi também realizada uma análise de copy number variantion (CNV) para a família integrada na análise de WES, seguida de uma análise bioinformática e estudos in silico de modo a avaliar a presença de deleções de amplicons que pudessem segregar com a doença. O envolvimento de transcritos alternativos do gene TPP2, previamente identificado como um possível gene candidato para o FCCTX noutra família, foi também avaliado em indivíduos saudáveis e afetados por análise mutacional/splicing, quantificação relativa por PCR quantitativo e teste da proteína truncada, para avaliar a existência de proteínas truncantes. A análise bioinformática seguida pela análise in silico e segregação das variantes obtidas por WES revelou a segregação com a doença de uma variante no gene CACNA1S. Tendo em conta as variantes já obtidas, foram identificadas 7 variantes em diferentes genes como possíveis intervenientes na suscetibilidade para o FCCTX nesta família. A análise de segregação revelou ainda a segregação das variantes dos genes MTMR3 e TAS1R1 num individuo proveniente de uma geração anterior. A análise de CNV revelou, após a introdução de critérios seletivos, 22 amplicons de interesse com um cenário de deleção, para estudos de segregação adicionais. A análise de mutações germinais num conjunto de famílias FCCTX e potenciais famílias FCCTX revelou 2 e 3 variantes potencialmente patogênicas para os genes MTMR3 e TAS1R1, respetivamente. Uma das variantes encontradas no gene MTMR3 correspondeu à variante encontrada no estudo de WES. Não foram observadas até ao momento variantes relevantes para os genes LGR6 e DUSP12, porém esta análise não está completa. O estudo do gene TPP2 revelou a presença de isoformas não descritas. Uma destas isoformas apresentou uma expressão diferencial entre o transcrito normal e o alternativo em indivíduos saudáveis e afetados e, o teste da proteína truncada revelou que este transcrito alternativo dá origem a uma proteína truncada. Em conclusão, a identificação de mais de uma variante genética parece concordar com a sugestão de que o FCCTX é uma entidade heterogénea, e a descoberta de variantes potencialmente patogénicas nos genes MTMR3 e TAS1R1 reforçam seu possível envolvimento no FCCTX. O transcrito alternativo do gene TPP2 parece estar envolvido numa fase inicial da carcinogénese colorretal

    Molecular genetic studies of the Prp8 splicing factor

    Get PDF

    Molecular epidemiology study on genetically regulated gene expression in the colonic mucosa and its role in disease susceptibility

    Full text link
    [spa] La expresión genética es un proceso celular clave, que además está relacionado con la susceptibilidad genética a enfermedades y rasgos complejos. La mayoría de genes se someten a splicing alternativo (AS). Las variantes genéticas que regulan la expresión genética y el AS se llaman ¿quantitative trait loci¿ (e/sQTLs). Técnicas estadísticas permiten predecir in silico la expresión genética en un tejido concreto a partir de datos genéticos. Esta aproximación se lleva a cabo en los estudios de asociación de transcriptoma completo (TWAS). Esta Tesis se compone de tres objetivos principales y presenta tres artículos. 1) Generar perfiles de expresión genética de la mucosa colónica de individuos sanos, así como sus diferencias a lo largo del colon y sus e/sQTLs asociados; 2) Desarrollar una aplicación web que permita explorar los datos de expresión genética en el colon; 3) Llevar a cabo un TWAS para proponer genes de susceptibilidad a enfermedad inflamatoria intestinal (EII). Como resumen de los resultados, 1) se generaron catálogos de e/sQTLs a partir de nuevos datos de expresión genética en colon de 445 individuos, y se encontraron más de 4,000 genes que varían sus niveles de expresión a lo largo del colon; 2) se desarrolló el "Colon Transcriptome Explorer", disponible públicamente en https://barcuvaseq.org/cotrex/; 3) se propusieron más de doscientos genes de susceptibilidad genética a EII. En conclusión, nuestros estudios proporcionan nuevos datos y evidencias sobre los genes involucrados en mecanismos de susceptibilidad a enfermedades relacionadas con el colon, y servirán de guía a otros investigadores para proponer nuevas hipótesis en este campo

    Characterisation of a gene trap integration marking hepatic specification

    Get PDF

    Differential evolution of non-coding DNA across eukaryotes and its close relationship with complex multicellularity on Earth

    Get PDF
    Here, I elaborate on the hypothesis that complex multicellularity (CM, sensu Knoll) is a major evolutionary transition (sensu Szathmary), which has convergently evolved a few times in Eukarya only: within red and brown algae, plants, animals, and fungi. Paradoxically, CM seems to correlate with the expansion of non-coding DNA (ncDNA) in the genome rather than with genome size or the total number of genes. Thus, I investigated the correlation between genome and organismal complexities across 461 eukaryotes under a phylogenetically controlled framework. To that end, I introduce the first formal definitions and criteria to distinguish ‘unicellularity’, ‘simple’ (SM) and ‘complex’ multicellularity. Rather than using the limited available estimations of unique cell types, the 461 species were classified according to our criteria by reviewing their life cycle and body plan development from literature. Then, I investigated the evolutionary association between genome size and 35 genome-wide features (introns and exons from protein-coding genes, repeats and intergenic regions) describing the coding and ncDNA complexities of the 461 genomes. To that end, I developed ‘GenomeContent’, a program that systematically retrieves massive multidimensional datasets from gene annotations and calculates over 100 genome-wide statistics. R-scripts coupled to parallel computing were created to calculate >260,000 phylogenetic controlled pairwise correlations. As previously reported, both repetitive and non-repetitive DNA are found to be scaling strongly and positively with genome size across most eukaryotic lineages. Contrasting previous studies, I demonstrate that changes in the length and repeat composition of introns are only weakly or moderately associated with changes in genome size at the global phylogenetic scale, while changes in intron abundance (within and across genes) are either not or only very weakly associated with changes in genome size. Our evolutionary correlations are robust to: different phylogenetic regression methods, uncertainties in the tree of eukaryotes, variations in genome size estimates, and randomly reduced datasets. Then, I investigated the correlation between the 35 genome-wide features and the cellular complexity of the 461 eukaryotes with phylogenetic Principal Component Analyses. Our results endorse a genetic distinction between SM and CM in Archaeplastida and Metazoa, but not so clearly in Fungi. Remarkably, complex multicellular organisms and their closest ancestral relatives are characterized by high intron-richness, regardless of genome size. Finally, I argue why and how a vast expansion of non-coding RNA (ncRNA) regulators rather than of novel protein regulators can promote the emergence of CM in Eukarya. As a proof of concept, I co-developed a novel ‘ceRNA-motif pipeline’ for the prediction of “competing endogenous” ncRNAs (ceRNAs) that regulate microRNAs in plants. We identified three candidate ceRNAs motifs: MIM166, MIM171 and MIM159/319, which were found to be conserved across land plants and be potentially involved in diverse developmental processes and stress responses. Collectively, the findings of this dissertation support our hypothesis that CM on Earth is a major evolutionary transition promoted by the expansion of two major ncDNA classes, introns and regulatory ncRNAs, which might have boosted the irreversible commitment of cell types in certain lineages by canalizing the timing and kinetics of the eukaryotic transcriptome.:Cover page Abstract Acknowledgements Index 1. The structure of this thesis 1.1. Structure of this PhD dissertation 1.2. Publications of this PhD dissertation 1.3. Computational infrastructure and resources 1.4. Disclosure of financial support and information use 1.5. Acknowledgements 1.6. Author contributions and use of impersonal and personal pronouns 2. Biological background 2.1. The complexity of the eukaryotic genome 2.2. The problem of counting and defining “genes” in eukaryotes 2.3. The “function” concept for genes and “dark matter” 2.4. Increases of organismal complexity on Earth through multicellularity 2.5. Multicellularity is a “fitness transition” in individuality 2.6. The complexity of cell differentiation in multicellularity 3. Technical background 3.1. The Phylogenetic Comparative Method (PCM) 3.2. RNA secondary structure prediction 3.3. Some standards for genome and gene annotation 4. What is in a eukaryotic genome? GenomeContent provides a good answer 4.1. Background 4.2. Motivation: an interoperable tool for data retrieval of gene annotations 4.3. Methods 4.4. Results 4.5. Discussion 5. The evolutionary correlation between genome size and ncDNA 5.1. Background 5.2. Motivation: estimating the relationship between genome size and ncDNA 5.3. Methods 5.4. Results 5.5. Discussion 6. The relationship between non-coding DNA and Complex Multicellularity 6.1. Background 6.2. Motivation: How to define and measure complex multicellularity across eukaryotes? 6.3. Methods 6.4. Results 6.5. Discussion 7. The ceRNA motif pipeline: regulation of microRNAs by target mimics 7.1. Background 7.2. A revisited protocol for the computational analysis of Target Mimics 7.3. Motivation: a novel pipeline for ceRNA motif discovery 7.4. Methods 7.5. Results 7.6. Discussion 8. Conclusions and outlook 8.1. Contributions and lessons for the bioinformatics of large-scale comparative analyses 8.2. Intron features are evolutionarily decoupled among themselves and from genome size throughout Eukarya 8.3. “Complex multicellularity” is a major evolutionary transition 8.4. Role of RNA throughout the evolution of life and complex multicellularity on Earth 9. Supplementary Data Bibliography Curriculum Scientiae Selbständigkeitserklärung (declaration of authorship
    corecore