2,584 research outputs found

    Complementary Algorithms For Tableaux

    Get PDF
    We study four operations defined on pairs of tableaux. Algorithms for the first three involve the familiar procedures of jeu de taquin, row insertion, and column insertion. The fourth operation, hopscotch, is new, although specialised versions have appeared previously. Like the other three operations, this new operation may be computed with a set of local rules in a growth diagram, and it preserves Knuth equivalence class. Each of these four operations gives rise to an a priori distinct theory of dual equivalence. We show that these four theories coincide. The four operations are linked via the involutive tableau operations of complementation and conjugation.Comment: 29 pages, 52 .eps files for figures, JCTA, to appea

    The weighted hook length formula

    Full text link
    Based on the ideas in [CKP], we introduce the weighted analogue of the branching rule for the classical hook length formula, and give two proofs of this result. The first proof is completely bijective, and in a special case gives a new short combinatorial proof of the hook length formula. Our second proof is probabilistic, generalizing the (usual) hook walk proof of Green-Nijenhuis-Wilf, as well as the q-walk of Kerov. Further applications are also presented.Comment: 14 pages, 4 figure

    A New Rational Algorithm for View Updating in Relational Databases

    Full text link
    The dynamics of belief and knowledge is one of the major components of any autonomous system that should be able to incorporate new pieces of information. In order to apply the rationality result of belief dynamics theory to various practical problems, it should be generalized in two respects: first it should allow a certain part of belief to be declared as immutable; and second, the belief state need not be deductively closed. Such a generalization of belief dynamics, referred to as base dynamics, is presented in this paper, along with the concept of a generalized revision algorithm for knowledge bases (Horn or Horn logic with stratified negation). We show that knowledge base dynamics has an interesting connection with kernel change via hitting set and abduction. In this paper, we show how techniques from disjunctive logic programming can be used for efficient (deductive) database updates. The key idea is to transform the given database together with the update request into a disjunctive (datalog) logic program and apply disjunctive techniques (such as minimal model reasoning) to solve the original update problem. The approach extends and integrates standard techniques for efficient query answering and integrity checking. The generation of a hitting set is carried out through a hyper tableaux calculus and magic set that is focused on the goal of minimality.Comment: arXiv admin note: substantial text overlap with arXiv:1301.515
    • …
    corecore