24,388 research outputs found

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Knowledge-Intensive Processes: Characteristics, Requirements and Analysis of Contemporary Approaches

    Get PDF
    Engineering of knowledge-intensive processes (KiPs) is far from being mastered, since they are genuinely knowledge- and data-centric, and require substantial flexibility, at both design- and run-time. In this work, starting from a scientific literature analysis in the area of KiPs and from three real-world domains and application scenarios, we provide a precise characterization of KiPs. Furthermore, we devise some general requirements related to KiPs management and execution. Such requirements contribute to the definition of an evaluation framework to assess current system support for KiPs. To this end, we present a critical analysis on a number of existing process-oriented approaches by discussing their efficacy against the requirements

    Blueprint model and language for engineering cloud applications

    Get PDF
    Abstract: The research presented in this thesis is positioned within the domain of engineering CSBAs. Its contribution is twofold: (1) a uniform specification language, called the Blueprint Specification Language (BSL), for specifying cloud services across several cloud vendors and (2) a set of associated techniques, called the Blueprint Manipulation Techniques (BMTs), for publishing, querying, and composing cloud service specifications with aim to support the flexible design and configuration of an CSBA.

    Aspect-oriented domain analysis

    Get PDF
    Dissertação de Mestrado em Engenharia InformáticaDomain analysis (DA) consists of analyzing properties, concepts and solutions for a given domain of application. Based on that information, decisions are made concerning the software development for future application within that domain. In DA, feature modeling is used to describe common and variable requirements for software systems. Nevertheless, they show a limited view of the domain. In the mean time, requirement approaches can be integrated to specify the domain requirements. Among them, we have viewpoint oriented approaches that stand out by their simplicity, and efficiency organizing requirements. However, none of them deals with modularization of crosscutting subjects. A crosscutting subject can be spread out in several requirement documents. In this work we will use a viewpoint oriented approach to describe the domain requirements extended with aspects. Aspect-oriented domain analysis (AODA) is a growing area of interest as it addresses the problem of specifying crosscutting properties at the domain analysis level. The goal of this area is to obtain a better reuse at this abstraction level through the advantages of aspect orientation. The aim of this work is to propose an approach that extends domain analysis with aspects also using feature modeling and viewpoint

    PrimitiveC-ADL: Primitive Component Architecture Description Language

    Get PDF
    In this paper, we introduce an architecture descrip- tion language (ADL) for PCOMs (a context oriented component model). The language is described at three levels: (1) Building blocks (PCOMs context oriented components types) (2) Connec- tors, which connect components externally and internally, and (3) Architectural Configuration, which includes a full description of composition and decomposition mechanisms. The contribution is designing ADL. That supports context- orinted component by providing new architecture elements, which fulfil the requirements of designing context oriented component based applications. Context oriented component is a behavioural unit composed of static parts and dynamic parts. A PCOMs component model design was introduced in our previous work. PCOMs proposes a component model design to compose context-aware system by capturing context condition at runtime. The model is a component-based one that modifies the application architecture by subdividing components into subsystems of static and dynamic elements. We map each context condition to a composable template architectural configuration. Each context condition acts to select behavioural patterns, which combine to form application architectures. Different types of architecture elements are proposed in this work. We focus in defining the following new elements: Com- ponents’ dynamic and static parts, components’ layers, decision policies, and composition plan. Finally we introduce an ADL that fully supports context aware applications, by supporting the definition of a component as a unit of behaviour. Our ADL clearly defines the composition mechanisms, and provides proper definition for the composition’s design Patterns and composition plan. A Context oriented component is a behavioural unit composed with static parts and dynamic parts. A PCOMs component model design was introduced in our previous work. PCOMs proposes a component model design to compose context-aware system by capturing context condition at runtime. The model is a component-based one that modifies the application architecture by subdividing components into subsystems of static and dynamic elements. We map each context condition to a composable tem- plate architectural configuration. Each context condition acts to selected behavioural patterns, which combine to form application architectures
    corecore