1,527 research outputs found

    Metamodel Instance Generation: A systematic literature review

    Get PDF
    Modelling and thus metamodelling have become increasingly important in Software Engineering through the use of Model Driven Engineering. In this paper we present a systematic literature review of instance generation techniques for metamodels, i.e. the process of automatically generating models from a given metamodel. We start by presenting a set of research questions that our review is intended to answer. We then identify the main topics that are related to metamodel instance generation techniques, and use these to initiate our literature search. This search resulted in the identification of 34 key papers in the area, and each of these is reviewed here and discussed in detail. The outcome is that we are able to identify a knowledge gap in this field, and we offer suggestions as to some potential directions for future research.Comment: 25 page

    Open Programming Language Interpreters

    Get PDF
    Context: This paper presents the concept of open programming language interpreters and the implementation of a framework-level metaobject protocol (MOP) to support them. Inquiry: We address the problem of dynamic interpreter adaptation to tailor the interpreter's behavior on the task to be solved and to introduce new features to fulfill unforeseen requirements. Many languages provide a MOP that to some degree supports reflection. However, MOPs are typically language-specific, their reflective functionality is often restricted, and the adaptation and application logic are often mixed which hardens the understanding and maintenance of the source code. Our system overcomes these limitations. Approach: We designed and implemented a system to support open programming language interpreters. The prototype implementation is integrated in the Neverlang framework. The system exposes the structure, behavior and the runtime state of any Neverlang-based interpreter with the ability to modify it. Knowledge: Our system provides a complete control over interpreter's structure, behavior and its runtime state. The approach is applicable to every Neverlang-based interpreter. Adaptation code can potentially be reused across different language implementations. Grounding: Having a prototype implementation we focused on feasibility evaluation. The paper shows that our approach well addresses problems commonly found in the research literature. We have a demonstrative video and examples that illustrate our approach on dynamic software adaptation, aspect-oriented programming, debugging and context-aware interpreters. Importance: To our knowledge, our paper presents the first reflective approach targeting a general framework for language development. Our system provides full reflective support for free to any Neverlang-based interpreter. We are not aware of any prior application of open implementations to programming language interpreters in the sense defined in this paper. Rather than substituting other approaches, we believe our system can be used as a complementary technique in situations where other approaches present serious limitations

    Amalia -- A Unified Platform for Parsing and Generation

    Full text link
    Contemporary linguistic theories (in particular, HPSG) are declarative in nature: they specify constraints on permissible structures, not how such structures are to be computed. Grammars designed under such theories are, therefore, suitable for both parsing and generation. However, practical implementations of such theories don't usually support bidirectional processing of grammars. We present a grammar development system that includes a compiler of grammars (for parsing and generation) to abstract machine instructions, and an interpreter for the abstract machine language. The generation compiler inverts input grammars (designed for parsing) to a form more suitable for generation. The compiled grammars are then executed by the interpreter using one control strategy, regardless of whether the grammar is the original or the inverted version. We thus obtain a unified, efficient platform for developing reversible grammars.Comment: 8 pages postscrip

    Teaching computer language handling - From compiler theory to meta-modelling

    Get PDF
    Most universities teach computer language handling by mainly focussing on compiler theory, although MDA (model-driven architecture) and meta-modelling are increasingly important in the software industry as well as in computer science. In this article, we investigate how traditional compiler theory compares to meta-modelling with regard to formally defining the different aspects of a language, and how we can expand the focus in computer language handling courses to also include meta-model-based approaches. We give an outline of a computer language handling course that covers both paradigms, and share some experiences from running a course based on this outline at the University of Agder
    • …
    corecore