31 research outputs found

    Towards A Practical High-Assurance Systems Programming Language

    Full text link
    Writing correct and performant low-level systems code is a notoriously demanding job, even for experienced developers. To make the matter worse, formally reasoning about their correctness properties introduces yet another level of complexity to the task. It requires considerable expertise in both systems programming and formal verification. The development can be extremely costly due to the sheer complexity of the systems and the nuances in them, if not assisted with appropriate tools that provide abstraction and automation. Cogent is designed to alleviate the burden on developers when writing and verifying systems code. It is a high-level functional language with a certifying compiler, which automatically proves the correctness of the compiled code and also provides a purely functional abstraction of the low-level program to the developer. Equational reasoning techniques can then be used to prove functional correctness properties of the program on top of this abstract semantics, which is notably less laborious than directly verifying the C code. To make Cogent a more approachable and effective tool for developing real-world systems, we further strengthen the framework by extending the core language and its ecosystem. Specifically, we enrich the language to allow users to control the memory representation of algebraic data types, while retaining the automatic proof with a data layout refinement calculus. We repurpose existing tools in a novel way and develop an intuitive foreign function interface, which provides users a seamless experience when using Cogent in conjunction with native C. We augment the Cogent ecosystem with a property-based testing framework, which helps developers better understand the impact formal verification has on their programs and enables a progressive approach to producing high-assurance systems. Finally we explore refinement type systems, which we plan to incorporate into Cogent for more expressiveness and better integration of systems programmers with the verification process

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Affine Disjunctive Invariant Generation with Farkas' Lemma

    Full text link
    Invariant generation is the classical problem that aims at automated generation of assertions that over-approximates the set of reachable program states in a program. We consider the problem of generating affine invariants over affine while loops (i.e., loops with affine loop guards, conditional branches and assignment statements), and explore the automated generation of disjunctive affine invariants. Disjunctive invariants are an important class of invariants that capture disjunctive features in programs such as multiple phases, transitions between different modes, etc., and are typically more precise than conjunctive invariants over programs with these features. To generate tight affine invariants, existing constraint-solving approaches have investigated the application of Farkas' Lemma to conjunctive affine invariant generation, but none of them considers disjunctive affine invariants

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Analyse statique de transformations pour l'Ă©limination de motifs

    Get PDF
    Program transformation is an extremely common practice in computer science. From compilation to tests generation, through many approaches of code analysis and formal verification of programs, it is a process that is both ubiquitous and critical to properly functioning programs and information systems. This thesis proposes to study the program transformations mechanisms in order to express and verify syntactical guarantees on the behaviour of these transformations and on their results.Giving a characterisation of the shape of terms returned by such a transformation is, indeed, a common approach to the formal verification of programs. In order to express some properties often used by this type of approaches, we propose in this thesis a formalism inspired by themodel of compilation passes, which are used to describe the general compilation of a program as a sequence of minimal transformations, and based on the notions of pattern matching and term rewriting.This formalism relies on an annotation mechanism of function symbols in order to express a set of specifications describing the behaviours of the associated functions. We then propose a static analysis method in order to check that a transformation, expressed as a term rewritesystem, actually verifies its specifications.La transformation de programmes est une pratique très courante dans le domaine des sciences informatiques. De la compilation à la génération de test en passant par de nombreuses approches d’analyse de codes et de vérification formelle des programmes, c’est un procédé qui est à la fois omniprésent et crucial au bon fonctionnement des programmes et systèmes informatiques. Cette thèse propose une étude formelle des procédures de transformation de programmes dans le but d’exprimer et de garantir des propriétés syntaxiques sur le comportement et les résultats d’unetelle transformation.Dans le contexte de la vérification formelle des programmes, il est en effet souvent nécessaire de pouvoir caractériser la forme des termes obtenus par réduction suivant une telle transformation. En s’inspirant du modèle de passes de compilation, qui décrivent un séquençage de la compilation d’un programme en étapes de transformation minimales n’affectant qu’un petit nombre des constructions du langage, on introduit, dans cette thèse, un formalisme basé sur les notions de filtrage par motif et de réécriture permettant de décrire certaines propriétés couramment induites par ce type de transformations.Le formalisme proposé se repose sur un système d’annotations des symboles de fonction décrivant une spécification du comportement attendu des fonctions associées. On présente alors une méthode d’analyse statique permettant de vérifier que les transformations étudiées, exprimées par un système de réécriture, satisfont en effet ces spécifications

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Formal Specification and Verification for Automated Production Systems

    Get PDF
    Complex industrial control software often drives safety- and mission-critical systems, like automated production plants or control units embedded into devices in automotive systems. Such controllers have in common that they are reactive systems, i.e., that they periodically read sensor stimuli and cyclically execute the same program to produce actuator signals. The correctness of software for automated production is rarely verified using formal techniques. Although, due to the Industrial Revolution 4.0 (IR4.0), the impact and importance of software have become an important role in industrial automation. What is used instead in industrial practice today is testing and simulation, where individual test cases are used to validate an automated production system. Three reasons why formal methods are not popular are: (a) It is difficult to adequately formulate the desired temporal properties. (b) There is a lack of specification languages for reactive systems that are both sufficiently expressive and comprehensible for practitioners. (c) Due to the lack of an environment model the obtained results are imprecise. Nonetheless, formal methods for automated production systems are well studied academically---mainly on the verification of safety properties via model checking. In this doctoral thesis we present the concept of (1) generalized test tables (GTTs), a new specification language for functional properties, and their extension (2) relational test tables (RTTs) for relational properties. The concept includes the syntactical notion, designed for the intuition of engineers, and the semantics, which are based on game theory. We use RTTs for a novel confidential property on reactive systems, the provably forgetting of information. Moreover, for regression verification, an important relational property, we are able to achieve performance improvements by (3) creating a decomposing rule which splits large proofs into small sub-task. We implemented the verification procedures and evaluated them against realistic case studies, e.g., the Pick-and-Place-Unit from the Technical University of Munich. The presented contribution follows the idea of lowering the obstacle of verifying the dependability of reactive systems in general, and automated production systems in particular for the engineer either by introducing a new specification language (GTTs), by exploiting existing programs for the specification (RTTs, regression verification), or by improving the verification performance

    Cautiously Optimistic Program Analyses for Secure and Reliable Software

    Full text link
    Modern computer systems still have various security and reliability vulnerabilities. Well-known dynamic analyses solutions can mitigate them using runtime monitors that serve as lifeguards. But the additional work in enforcing these security and safety properties incurs exorbitant performance costs, and such tools are rarely used in practice. Our work addresses this problem by constructing a novel technique- Cautiously Optimistic Program Analysis (COPA). COPA is optimistic- it infers likely program invariants from dynamic observations, and assumes them in its static reasoning to precisely identify and elide wasteful runtime monitors. The resulting system is fast, but also ensures soundness by recovering to a conservatively optimized analysis when a likely invariant rarely fails at runtime. COPA is also cautious- by carefully restricting optimizations to only safe elisions, the recovery is greatly simplified. It avoids unbounded rollbacks upon recovery, thereby enabling analysis for live production software. We demonstrate the effectiveness of Cautiously Optimistic Program Analyses in three areas: Information-Flow Tracking (IFT) can help prevent security breaches and information leaks. But they are rarely used in practice due to their high performance overhead (>500% for web/email servers). COPA dramatically reduces this cost by eliding wasteful IFT monitors to make it practical (9% overhead, 4x speedup). Automatic Garbage Collection (GC) in managed languages (e.g. Java) simplifies programming tasks while ensuring memory safety. However, there is no correct GC for weakly-typed languages (e.g. C/C++), and manual memory management is prone to errors that have been exploited in high profile attacks. We develop the first sound GC for C/C++, and use COPA to optimize its performance (16% overhead). Sequential Consistency (SC) provides intuitive semantics to concurrent programs that simplifies reasoning for their correctness. However, ensuring SC behavior on commodity hardware remains expensive. We use COPA to ensure SC for Java at the language-level efficiently, and significantly reduce its cost (from 24% down to 5% on x86). COPA provides a way to realize strong software security, reliability and semantic guarantees at practical costs.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/170027/1/subarno_1.pd

    Choreographies and Cost Semantics for Reliable Communicating Systems

    Get PDF
    Communicating systems have become ubiquitous in today\u27s society.Unfortunately, the complexity of their interactions makes themparticularly prone to failures such as deadlocked states causedby misbehaving components, or memory exhaustion due to a surge inmessage traffic (malicious or not). These vulnerabilitiesconstitute a real risk to users, with consequences ranging fromminor inconveniences to the possibility of loss of life andcapital. This thesis presents two results that aim to increasethe reliability of communicating systems. First, we implement achoreography language which by construction can only describesystems that are deadlock-free. Second, we develop a costsemantics to prove programs free of out-of-memory errors. Both ofthese results are formalized in the HOL4 theorem prover andintegrated with the CakeML verified stack
    corecore