2,759 research outputs found

    Reuse It Or Lose It: More Efficient Secure Computation Through Reuse of Encrypted Values

    Full text link
    Two-party secure function evaluation (SFE) has become significantly more feasible, even on resource-constrained devices, because of advances in server-aided computation systems. However, there are still bottlenecks, particularly in the input validation stage of a computation. Moreover, SFE research has not yet devoted sufficient attention to the important problem of retaining state after a computation has been performed so that expensive processing does not have to be repeated if a similar computation is done again. This paper presents PartialGC, an SFE system that allows the reuse of encrypted values generated during a garbled-circuit computation. We show that using PartialGC can reduce computation time by as much as 96% and bandwidth by as much as 98% in comparison with previous outsourcing schemes for secure computation. We demonstrate the feasibility of our approach with two sets of experiments, one in which the garbled circuit is evaluated on a mobile device and one in which it is evaluated on a server. We also use PartialGC to build a privacy-preserving "friend finder" application for Android. The reuse of previous inputs to allow stateful evaluation represents a new way of looking at SFE and further reduces computational barriers.Comment: 20 pages, shorter conference version published in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Pages 582-596, ACM New York, NY, US

    Protecting Private Data in the Cloud

    Get PDF
    Companies that process business critical and secret data are reluctant to use utility and cloud computing for the risk that their data gets stolen by rogue system administrators at the hosting company. We describe a system organization that prevents host administrators from directly accessing or installing eaves-dropping software on the machine that holds the client's valuable data. Clients are monitored via machine code probes that are inlined into the clients' programs at runtime. The system enables the cloud provider to install and remove software probes into the machine code without stopping the client's program, and it prevents the provider from installing probes not granted by the client

    Compiling and securing cryptographic protocols

    Get PDF
    Protocol narrations are widely used in security as semi-formal notations to specify conversations between roles. We define a translation from a protocol narration to the sequences of operations to be performed by each role. Unlike previous works, we reduce this compilation process to well-known decision problems in formal protocol analysis. This allows one to define a natural notion of prudent translation and to reuse many known results from the literature in order to cover more crypto-primitives. In particular this work is the first one to show how to compile protocols parameterised by the properties of the available operations.Comment: A short version was submitted to IP

    Towards Improved Homomorphic Encryption for Privacy-Preserving Deep Learning

    Get PDF
    Mención Internacional en el título de doctorDeep Learning (DL) has supposed a remarkable transformation for many fields, heralded by some as a new technological revolution. The advent of large scale models has increased the demands for data and computing platforms, for which cloud computing has become the go-to solution. However, the permeability of DL and cloud computing are reduced in privacy-enforcing areas that deal with sensitive data. These areas imperatively call for privacy-enhancing technologies that enable responsible, ethical, and privacy-compliant use of data in potentially hostile environments. To this end, the cryptography community has addressed these concerns with what is known as Privacy-Preserving Computation Techniques (PPCTs), a set of tools that enable privacy-enhancing protocols where cleartext access to information is no longer tenable. Of these techniques, Homomorphic Encryption (HE) stands out for its ability to perform operations over encrypted data without compromising data confidentiality or privacy. However, despite its promise, HE is still a relatively nascent solution with efficiency and usability limitations. Improving the efficiency of HE has been a longstanding challenge in the field of cryptography, and with improvements, the complexity of the techniques has increased, especially for non-experts. In this thesis, we address the problem of the complexity of HE when applied to DL. We begin by systematizing existing knowledge in the field through an in-depth analysis of state-of-the-art for privacy-preserving deep learning, identifying key trends, research gaps, and issues associated with current approaches. One such identified gap lies in the necessity for using vectorized algorithms with Packed Homomorphic Encryption (PaHE), a state-of-the-art technique to reduce the overhead of HE in complex areas. This thesis comprehensively analyzes existing algorithms and proposes new ones for using DL with PaHE, presenting a formal analysis and usage guidelines for their implementation. Parameter selection of HE schemes is another recurring challenge in the literature, given that it plays a critical role in determining not only the security of the instantiation but also the precision, performance, and degree of security of the scheme. To address this challenge, this thesis proposes a novel system combining fuzzy logic with linear programming tasks to produce secure parametrizations based on high-level user input arguments without requiring low-level knowledge of the underlying primitives. Finally, this thesis describes HEFactory, a symbolic execution compiler designed to streamline the process of producing HE code and integrating it with Python. HEFactory implements the previous proposals presented in this thesis in an easy-to-use tool. It provides a unique architecture that layers the challenges associated with HE and produces simplified operations interpretable by low-level HE libraries. HEFactory significantly reduces the overall complexity to code DL applications using HE, resulting in an 80% length reduction from expert-written code while maintaining equivalent accuracy and efficiency.El aprendizaje profundo ha supuesto una notable transformación para muchos campos que algunos han calificado como una nueva revolución tecnológica. La aparición de modelos masivos ha aumentado la demanda de datos y plataformas informáticas, para lo cual, la computación en la nube se ha convertido en la solución a la que recurrir. Sin embargo, la permeabilidad del aprendizaje profundo y la computación en la nube se reduce en los ámbitos de la privacidad que manejan con datos sensibles. Estas áreas exigen imperativamente el uso de tecnologías de mejora de la privacidad que permitan un uso responsable, ético y respetuoso con la privacidad de los datos en entornos potencialmente hostiles. Con este fin, la comunidad criptográfica ha abordado estas preocupaciones con las denominadas técnicas de la preservación de la privacidad en el cómputo, un conjunto de herramientas que permiten protocolos de mejora de la privacidad donde el acceso a la información en texto claro ya no es sostenible. Entre estas técnicas, el cifrado homomórfico destaca por su capacidad para realizar operaciones sobre datos cifrados sin comprometer la confidencialidad o privacidad de la información. Sin embargo, a pesar de lo prometedor de esta técnica, sigue siendo una solución relativamente incipiente con limitaciones de eficiencia y usabilidad. La mejora de la eficiencia del cifrado homomórfico en la criptografía ha sido todo un reto, y, con las mejoras, la complejidad de las técnicas ha aumentado, especialmente para los usuarios no expertos. En esta tesis, abordamos el problema de la complejidad del cifrado homomórfico cuando se aplica al aprendizaje profundo. Comenzamos sistematizando el conocimiento existente en el campo a través de un análisis exhaustivo del estado del arte para el aprendizaje profundo que preserva la privacidad, identificando las tendencias clave, las lagunas de investigación y los problemas asociados con los enfoques actuales. Una de las lagunas identificadas radica en el uso de algoritmos vectorizados con cifrado homomórfico empaquetado, que es una técnica del estado del arte que reduce el coste del cifrado homomórfico en áreas complejas. Esta tesis analiza exhaustivamente los algoritmos existentes y propone nuevos algoritmos para el uso de aprendizaje profundo utilizando cifrado homomórfico empaquetado, presentando un análisis formal y unas pautas de uso para su implementación. La selección de parámetros de los esquemas del cifrado homomórfico es otro reto recurrente en la literatura, dado que juega un papel crítico a la hora de determinar no sólo la seguridad de la instanciación, sino también la precisión, el rendimiento y el grado de seguridad del esquema. Para abordar este reto, esta tesis propone un sistema innovador que combina la lógica difusa con tareas de programación lineal para producir parametrizaciones seguras basadas en argumentos de entrada de alto nivel sin requerir conocimientos de bajo nivel de las primitivas subyacentes. Por último, esta tesis propone HEFactory, un compilador de ejecución simbólica diseñado para agilizar el proceso de producción de código de cifrado homomórfico e integrarlo con Python. HEFactory es la culminación de las propuestas presentadas en esta tesis, proporcionando una arquitectura única que estratifica los retos asociados con el cifrado homomórfico, produciendo operaciones simplificadas que pueden ser interpretadas por bibliotecas de bajo nivel. Este enfoque permite a HEFactory reducir significativamente la longitud total del código, lo que supone una reducción del 80% en la complejidad de programación de aplicaciones de aprendizaje profundo que usan cifrado homomórfico en comparación con el código escrito por expertos, manteniendo una precisión equivalente.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidenta: María Isabel González Vasco.- Secretario: David Arroyo Guardeño.- Vocal: Antonis Michala

    Conclave: secure multi-party computation on big data (extended TR)

    Full text link
    Secure Multi-Party Computation (MPC) allows mutually distrusting parties to run joint computations without revealing private data. Current MPC algorithms scale poorly with data size, which makes MPC on "big data" prohibitively slow and inhibits its practical use. Many relational analytics queries can maintain MPC's end-to-end security guarantee without using cryptographic MPC techniques for all operations. Conclave is a query compiler that accelerates such queries by transforming them into a combination of data-parallel, local cleartext processing and small MPC steps. When parties trust others with specific subsets of the data, Conclave applies new hybrid MPC-cleartext protocols to run additional steps outside of MPC and improve scalability further. Our Conclave prototype generates code for cleartext processing in Python and Spark, and for secure MPC using the Sharemind and Obliv-C frameworks. Conclave scales to data sets between three and six orders of magnitude larger than state-of-the-art MPC frameworks support on their own. Thanks to its hybrid protocols, Conclave also substantially outperforms SMCQL, the most similar existing system.Comment: Extended technical report for EuroSys 2019 pape
    corecore