5,126 research outputs found

    Profile-directed specialisation of custom floating-point hardware

    No full text
    We present a methodology for generating floating-point arithmetic hardware designs which are, for suitable applications, much reduced in size, while still retaining performance and IEEE-754 compliance. Our system uses three key parts: a profiling tool, a set of customisable floating-point units and a selection of system integration methods. We use a profiling tool for floating-point behaviour to identify arithmetic operations where fundamental elements of IEEE-754 floating-point may be compromised, without generating erroneous results in the common case. In the uncommon case, we use simple detection logic to determine when operands lie outside the range of capabilities of the optimised hardware. Out-of-range operations are handled by a separate, fully capable, floatingpoint implementation, either on-chip or by returning calculations to a host processor. We present methods of system integration to achieve this errorcorrection. Thus the system suffers no compromise in IEEE-754 compliance, even when the synthesised hardware would generate erroneous results. In particular, we identify from input operands the shift amounts required for input operand alignment and post-operation normalisation. For operations where these are small, we synthesise hardware with reduced-size barrel-shifters. We also propose optimisations to take advantage of other profile-exposed behaviours, including removing the hardware required to swap operands in a floating-point adder or subtractor, and reducing the exponent range to fit observed values. We present profiling results for a range of applications, including a selection of computational science programs, Spec FP 95 benchmarks and the FFMPEG media processing tool, indicating which would be amenable to our method. Selected applications which demonstrate potential for optimisation are then taken through to a hardware implementation. We show up to a 45% decrease in hardware size for a floating-point datapath, with a correctable error-rate of less then 3%, even with non-profiled datasets

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    Static resource models for code generation of embedded processors

    Get PDF
    xii+129hlm.;24c
    • …
    corecore