18,079 research outputs found

    Competitive Online Searching for a Ray in the Plane

    Get PDF
    We consider the problem of a searcher that looks, for example, for a lost flashlight in a dusty environment. The searcher finds the flashlight as soon as it crosses the ray emanating from the flashlight. In order to pick it up, the searcher moves to the origin of the light beam. We compare the length of the path of the searcher to the shortest path to the goal. First, we give a search strategy for a special case of the ray search---the window shopper problem---, where the ray we are looking for is perpendicular to a known ray. Our strategy achieves a competitive factor of 1.059ldots1.059ldots, which is optimal. Then, we consider rays in arbitrary position in the plane. We present an online strategy that achieves a factor of 22.513ldots22.513ldots, and give a lower bound of 2pi,e=17.079ldots2pi,e=17.079ldots

    Lower Bounds for Shoreline Searching With 2 or More Robots

    Get PDF
    Searching for a line on the plane with nn unit speed robots is a classic online problem that dates back to the 50's, and for which competitive ratio upper bounds are known for every n1n\geq 1. In this work we improve the best lower bound known for n=2n=2 robots from 1.5993 to 3. Moreover we prove that the competitive ratio is at least 3\sqrt{3} for n=3n=3 robots, and at least 1/cos(π/n)1/\cos(\pi/n) for n4n\geq 4 robots. Our lower bounds match the best upper bounds known for n4n\geq 4, hence resolving these cases. To the best of our knowledge, these are the first lower bounds proven for the cases n3n\geq 3 of this several decades old problem.Comment: This is an updated version of the paper with the same title which will appear in the proceedings of the 23rd International Conference on Principles of Distributed Systems (OPODIS 2019) Neuchatel, Switzerland, July 17-19, 201

    Recent results from the ANTARES deep sea neutrino telescope

    Full text link
    The ANTARES deep sea neutrino telescope has acquired over four years of high quality data. This data has been used to measure the oscillation parameters of atmospheric neutrinos and also to search for neutrinos of a non-terrestrial origin. Competitive upper limits on the fluxes of neutrinos from dark matter annihilation in the Sun, a variety of Galactic and extra-galactic sources, both steady and transient, are presented
    corecore