22,597 research outputs found

    On Randomized Memoryless Algorithms for the Weighted kk-server Problem

    Full text link
    The weighted kk-server problem is a generalization of the kk-server problem in which the cost of moving a server of weight βi\beta_i through a distance dd is βid\beta_i\cdot d. The weighted server problem on uniform spaces models caching where caches have different write costs. We prove tight bounds on the performance of randomized memoryless algorithms for this problem on uniform metric spaces. We prove that there is an αk\alpha_k-competitive memoryless algorithm for this problem, where αk=αk12+3αk1+1\alpha_k=\alpha_{k-1}^2+3\alpha_{k-1}+1; α1=1\alpha_1=1. On the other hand we also prove that no randomized memoryless algorithm can have competitive ratio better than αk\alpha_k. To prove the upper bound of αk\alpha_k we develop a framework to bound from above the competitive ratio of any randomized memoryless algorithm for this problem. The key technical contribution is a method for working with potential functions defined implicitly as the solution of a linear system. The result is robust in the sense that a small change in the probabilities used by the algorithm results in a small change in the upper bound on the competitive ratio. The above result has two important implications. Firstly this yields an αk\alpha_k-competitive memoryless algorithm for the weighted kk-server problem on uniform spaces. This is the first competitive algorithm for k>2k>2 which is memoryless. Secondly, this helps us prove that the Harmonic algorithm, which chooses probabilities in inverse proportion to weights, has a competitive ratio of kαkk\alpha_k.Comment: Published at the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2013

    The Infinite Server Problem

    Get PDF
    We study a variant of the k-server problem, the infinite server problem, in which infinitely many servers reside initially at a particular point of the metric space and serve a sequence of requests. In the framework of competitive analysis, we show a surprisingly tight connection between this problem and the (h,k)-server problem, in which an online algorithm with k servers competes against an offline algorithm with h servers. Specifically, we show that the infinite server problem has bounded competitive ratio if and only if the (h,k)-server problem has bounded competitive ratio for some k=O(h). We give a lower bound of 3.146 for the competitive ratio of the infinite server problem, which implies the same lower bound for the (h,k)-server problem even when k>>h and holds also for the line metric; the previous known bounds were 2.4 for general metric spaces and 2 for the line. For weighted trees and layered graphs we obtain upper bounds, although they depend on the depth. Of particular interest is the infinite server problem on the line, which we show to be equivalent to the seemingly easier case in which all requests are in a fixed bounded interval away from the original position of the servers. This is a special case of a more general reduction from arbitrary metric spaces to bounded subspaces. Unfortunately, classical approaches (double coverage and generalizations, work function algorithm, balancing algorithms) fail even for this special case

    Unbounded lower bound for k-server against weak adversaries

    Get PDF
    We study the resource augmented version of the kk-server problem, also known as the kk-server problem against weak adversaries or the (h,k)(h,k)-server problem. In this setting, an online algorithm using kk servers is compared to an offline algorithm using hh servers, where hkh\le k. For uniform metrics, it has been known since the seminal work of Sleator and Tarjan (1985) that for any ϵ>0\epsilon>0, the competitive ratio drops to a constant if k=(1+ϵ)hk=(1+\epsilon) \cdot h. This result was later generalized to weighted stars (Young 1994) and trees of bounded depth (Bansal et al. 2017). The main open problem for this setting is whether a similar phenomenon occurs on general metrics. We resolve this question negatively. With a simple recursive construction, we show that the competitive ratio is at least Ω(loglogh)\Omega(\log \log h), even as kk\to\infty. Our lower bound holds for both deterministic and randomized algorithms. It also disproves the existence of a competitive algorithm for the infinite server problem on general metrics.Comment: To appear in STOC 202
    corecore