4,510 research outputs found

    Energy Harvesting Networks with General Utility Functions: Near Optimal Online Policies

    Full text link
    We consider online scheduling policies for single-user energy harvesting communication systems, where the goal is to characterize online policies that maximize the long term average utility, for some general concave and monotonically increasing utility function. In our setting, the transmitter relies on energy harvested from nature to send its messages to the receiver, and is equipped with a finite-sized battery to store its energy. Energy packets are independent and identically distributed (i.i.d.) over time slots, and are revealed causally to the transmitter. Only the average arrival rate is known a priori. We first characterize the optimal solution for the case of Bernoulli arrivals. Then, for general i.i.d. arrivals, we first show that fixed fraction policies [Shaviv-Ozgur] are within a constant multiplicative gap from the optimal solution for all energy arrivals and battery sizes. We then derive a set of sufficient conditions on the utility function to guarantee that fixed fraction policies are within a constant additive gap as well from the optimal solution.Comment: To appear in the 2017 IEEE International Symposium on Information Theory. arXiv admin note: text overlap with arXiv:1705.1030

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    MIMO-OFDM Based Energy Harvesting Cooperative Communications Using Coalitional Game Algorithm

    Get PDF
    This document is the Accepted Manuscript version. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, we consider the problem of cooperative communication between relays and base station in an advanced MIMO-OFDM framework, under the assumption that the relays are supplied by electric power drawn from energy harvesting (EH) sources. In particular, we focus on the relay selection, with the goal to guarantee the required performance in terms of capacity. In order to maximize the data throughput under the EH constraint, we model the transmission scheme as a non-transferable coalition formation game, with characteristic function based on an approximated capacity expression. Then, we introduce a powerful mathematical tool inherent to coalitional game theory, namely: the Shapley value (Sv) to provide a reliable solution concept to the game. The selected relays will form a virtual dynamically-configuredMIMO network that is able to transmit data to destination using efficient space-time coding techniques. Numerical results, obtained by simulating the EH-powered cooperativeMIMO-OFDMtransmission with Algebraic Space-Time Coding (ASTC), prove that the proposed coalitional game-based relay selection allows to achieve performance very close to that obtained by the same system operated by guaranteed power supply. The proposed methodology is finally compared with some recent related state-of-the-art techniques showing clear advantages in terms of link performance and goodput.Peer reviewe
    • …
    corecore