1,997 research outputs found

    Ready To Roll: Southeastern Pennsylvania's Regional Electric Vehicle Action Plan

    Get PDF
    On-road internal combustion engine (ICE) vehicles are responsible for nearly one-third of energy use and one-quarter of greenhouse gas (GHG) emissions in southeastern Pennsylvania.1 Electric vehicles (EVs), including plug-in hybrid electric vehicles (PHEVs) and all-electric vehicles (AEVs), present an opportunity to serve a significant portion of the region's mobility needs while simultaneously reducing energy use, petroleum dependence, fueling costs, and GHG emissions. As a national leader in EV readiness, the region can serve as an example for other efforts around the country."Ready to Roll! Southeastern Pennsylvania's Regional EV Action Plan (Ready to Roll!)" is a comprehensive, regionally coordinated approach to introducing EVs and electric vehicle supply equipment (EVSE) into the five counties of southeastern Pennsylvania (Bucks, Chester, Delaware, Montgomery, and Philadelphia). This plan is the product of a partnership between the Delaware Valley Regional Planning Commission (DVRPC), the City of Philadelphia, PECO Energy Company (PECO; the region's electricity provider), and Greater Philadelphia Clean Cities (GPCC). Additionally, ICF International provided assistance to DVRPC with the preparation of this plan. The plan incorporates feedback from key regional stakeholders, national best practices, and research to assess the southeastern Pennsylvania EV market, identify current market barriers, and develop strategies to facilitate vehicle and infrastructure deployment

    A novel policy making proposition for EV charging infrastructure management at HEI's

    Get PDF
    This paper is based on real time EV charging infrastructure development that took place at Brunel University, which is located in west of London, UK. The aim of this paper is to establish the policy making process that has stages of an initial student-staff interest survey, records of the consultation process with EV owners, results of competitive benchmarking with other HEI's and the discussion on Type 2 Mode 3 charging stations which are 240V, 32A, 7kW, 50Hz compliant with IEC 62196 and ISO 14443 Mifare standards. The first time ever PAYG concept of POD Point Ltd is explained. Benefits of using PAYG concept for charging EV are mentioned. Various other factors that played major role were also considered as follows: deciding the tariff of the electricity used by the EV owners, charging cable compatibility with charging station, hours of operation, creation of new enforcement rules and recommendations to provide incentives that recognise and motivate EV community

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Full text link
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV and accepted by TCNS. In Version 4, the body of the paper is largely rewritten for clarity and consistency, and new numerical simulations are presented. All source code is available (MIT) at https://dx.doi.org/10.5281/zenodo.324165

    Electric Power Allocation in a Network of Fast Charging Stations

    Get PDF
    In order to increase the penetration of electric vehicles, a network of fast charging stations that can provide drivers with a certain level of quality of service (QoS) is needed. However, given the strain that such a network can exert on the power grid, and the mobility of loads represented by electric vehicles, operating it efficiently is a challenging problem. In this paper, we examine a network of charging stations equipped with an energy storage device and propose a scheme that allocates power to them from the grid, as well as routes customers. We examine three scenarios, gradually increasing their complexity. In the first one, all stations have identical charging capabilities and energy storage devices, draw constant power from the grid and no routing decisions of customers are considered. It represents the current state of affairs and serves as a baseline for evaluating the performance of the proposed scheme. In the second scenario, power to the stations is allocated in an optimal manner from the grid and in addition a certain percentage of customers can be routed to nearby stations. In the final scenario, optimal allocation of both power from the grid and customers to stations is considered. The three scenarios are evaluated using real traffic traces corresponding to weekday rush hour from a large metropolitan area in the US. The results indicate that the proposed scheme offers substantial improvements of performance compared to the current mode of operation; namely, more customers can be served with the same amount of power, thus enabling the station operators to increase their profitability. Further, the scheme provides guarantees to customers in terms of the probability of being blocked by the closest charging station. Overall, the paper addresses key issues related to the efficient operation of a network of charging stations.Comment: Published in IEEE Journal on Selected Areas in Communications July 201
    • …
    corecore