50,124 research outputs found

    Mechanism design for decentralized online machine scheduling

    Get PDF
    Traditional optimization models assume a central decision maker who optimizes a global system performance measure. However, problem data is often distributed among several agents, and agents take autonomous decisions. This gives incentives for strategic behavior of agents, possibly leading to sub-optimal system performance. Furthermore, in dynamic environments, machines are locally dispersed and administratively independent. Examples are found both in business and engineering applications. We investigate such issues for a parallel machine scheduling model where jobs arrive online over time. Instead of centrally assigning jobs to machines, each machine implements a local sequencing rule and jobs decide for machines themselves. In this context, we introduce the concept of a myopic best response equilibrium, a concept weaker than the classical dominant strategy equilibrium, but appropriate for online problems. Our main result is a polynomial time, online mechanism that |assuming rational behavior of jobs| results in an equilibrium schedule that is 3.281-competitive with respect to the maximal social welfare. This is only lightly worse than state-of-the-art algorithms with central coordination

    Integrated engineering environments for large complex products

    Get PDF
    An introduction is given to the Engineering Design Centre at the University of Newcastle upon Tyne, along with a brief explanation of the main focus towards large made-to-order products. Three key areas of research at the Centre, which have evolved as a result of collaboration with industrial partners from various sectors of industry, are identified as (1) decision support and optimisation, (2) design for lifecycle, and (3) design integration and co-ordination. A summary of the unique features of large made-to-order products is then presented, which includes the need for integration and co-ordination technologies. Thus, an overview of the existing integration and co-ordination technologies is presented followed by a brief explanation of research in these areas at the Engineering Design Centre. A more detailed description is then presented regarding the co-ordination aspect of research being conducted at the Engineering Design Centre, in collaboration with the CAD Centre at the University of Strathclyde. Concurrent Engineering is acknowledged as a strategy for improving the design process, however design coordination is viewed as a principal requirement for its successful implementation. That is, design co-ordination is proposed as being the key to a mechanism that is able to maximise and realise any potential opportunity of concurrency. Thus, an agentoriented approach to co-ordination is presented, which incorporates various types of agents responsible for managing their respective activities. The co-ordinated approach, which is implemented within the Design Co-ordination System, includes features such as resource management and monitoring, dynamic scheduling, activity direction, task enactment, and information management. An application of the Design Co-ordination System, in conjunction with a robust concept exploration tool, shows that the computational design analysis involved in evaluating many design concepts can be performed more efficiently through a co-ordinated approach

    Scheduling of data-intensive workloads in a brokered virtualized environment

    Full text link
    Providing performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, for which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource management solutions that consider the brokered nature of these workloads, as well as the special demands of their intra-dependent components. In this paper, we present an offline mechanism for scheduling batches of brokered data-intensive workloads, which can be extended to an online setting. The objective of the mechanism is to decide on a packing of the workloads in a batch that minimizes the broker's incurred costs, Moreover, considering the brokered nature of such workloads, we define a payment model that provides incentives to these workloads to be scheduled as part of a batch, which we analyze theoretically. Finally, we evaluate the proposed scheduling algorithm, and exemplify the fairness of the payment model in practical settings via trace-based experiments

    Makespan Minimization via Posted Prices

    Full text link
    We consider job scheduling settings, with multiple machines, where jobs arrive online and choose a machine selfishly so as to minimize their cost. Our objective is the classic makespan minimization objective, which corresponds to the completion time of the last job to complete. The incentives of the selfish jobs may lead to poor performance. To reconcile the differing objectives, we introduce posted machine prices. The selfish job seeks to minimize the sum of its completion time on the machine and the posted price for the machine. Prices may be static (i.e., set once and for all before any arrival) or dynamic (i.e., change over time), but they are determined only by the past, assuming nothing about upcoming events. Obviously, such schemes are inherently truthful. We consider the competitive ratio: the ratio between the makespan achievable by the pricing scheme and that of the optimal algorithm. We give tight bounds on the competitive ratio for both dynamic and static pricing schemes for identical, restricted, related, and unrelated machine settings. Our main result is a dynamic pricing scheme for related machines that gives a constant competitive ratio, essentially matching the competitive ratio of online algorithms for this setting. In contrast, dynamic pricing gives poor performance for unrelated machines. This lower bound also exhibits a gap between what can be achieved by pricing versus what can be achieved by online algorithms

    Evolution of a supply chain management game for the trading agent competition

    Get PDF
    TAC SCM is a supply chain management game for the Trading Agent Competition (TAC). The purpose of TAC is to spur high quality research into realistic trading agent problems. We discuss TAC and TAC SCM: game and competition design, scientific impact, and lessons learnt

    Continuous Interaction with a Virtual Human

    Get PDF
    Attentive Speaking and Active Listening require that a Virtual Human be capable of simultaneous perception/interpretation and production of communicative behavior. A Virtual Human should be able to signal its attitude and attention while it is listening to its interaction partner, and be able to attend to its interaction partner while it is speaking – and modify its communicative behavior on-the-fly based on what it perceives from its partner. This report presents the results of a four week summer project that was part of eNTERFACE’10. The project resulted in progress on several aspects of continuous interaction such as scheduling and interrupting multimodal behavior, automatic classification of listener responses, generation of response eliciting behavior, and models for appropriate reactions to listener responses. A pilot user study was conducted with ten participants. In addition, the project yielded a number of deliverables that are released for public access

    Autonomous Agents for Business Process Management

    No full text
    Traditional approaches to managing business processes are often inadequate for large-scale organisation-wide, dynamic settings. However, since Internet and Intranet technologies have become widespread, an increasing number of business processes exhibit these properties. Therefore, a new approach is needed. To this end, we describe the motivation, conceptualization, design, and implementation of a novel agent-based business process management system. The key advance of our system is that responsibility for enacting various components of the business process is delegated to a number of autonomous problem solving agents. To enact their role, these agents typically interact and negotiate with other agents in order to coordinate their actions and to buy in the services they require. This approach leads to a system that is significantly more agile and robust than its traditional counterparts. To help demonstrate these benefits, a companion paper describes the application of our system to a real-world problem faced by British Telecom
    corecore