173 research outputs found

    Online Computation with Untrusted Advice

    Get PDF
    The advice model of online computation captures the setting in which the online algorithm is given some partial information concerning the request sequence. This paradigm allows to establish tradeoffs between the amount of this additional information and the performance of the online algorithm. However, unlike real life in which advice is a recommendation that we can choose to follow or to ignore based on trustworthiness, in the current advice model, the online algorithm treats it as infallible. This means that if the advice is corrupt or, worse, if it comes from a malicious source, the algorithm may perform poorly. In this work, we study online computation in a setting in which the advice is provided by an untrusted source. Our objective is to quantify the impact of untrusted advice so as to design and analyze online algorithms that are robust and perform well even when the advice is generated in a malicious, adversarial manner. To this end, we focus on well- studied online problems such as ski rental, online bidding, bin packing, and list update. For ski-rental and online bidding, we show how to obtain algorithms that are Pareto-optimal with respect to the competitive ratios achieved; this improves upon the framework of Purohit et al. [NeurIPS 2018] in which Pareto-optimality is not necessarily guaranteed. For bin packing and list update, we give online algorithms with worst-case tradeoffs in their competitiveness, depending on whether the advice is trusted or not; this is motivated by work of Lykouris and Vassilvitskii [ICML 2018] on the paging problem, but in which the competitiveness depends on the reliability of the advice. Furthermore, we demonstrate how to prove lower bounds, within this model, on the tradeoff between the number of advice bits and the competitiveness of any online algorithm. Last, we study the effect of randomization: here we show that for ski-rental there is a randomized algorithm that Pareto-dominates any deterministic algorithm with advice of any size. We also show that a single random bit is not always inferior to a single advice bit, as it happens in the standard model

    Makespan Minimization via Posted Prices

    Full text link
    We consider job scheduling settings, with multiple machines, where jobs arrive online and choose a machine selfishly so as to minimize their cost. Our objective is the classic makespan minimization objective, which corresponds to the completion time of the last job to complete. The incentives of the selfish jobs may lead to poor performance. To reconcile the differing objectives, we introduce posted machine prices. The selfish job seeks to minimize the sum of its completion time on the machine and the posted price for the machine. Prices may be static (i.e., set once and for all before any arrival) or dynamic (i.e., change over time), but they are determined only by the past, assuming nothing about upcoming events. Obviously, such schemes are inherently truthful. We consider the competitive ratio: the ratio between the makespan achievable by the pricing scheme and that of the optimal algorithm. We give tight bounds on the competitive ratio for both dynamic and static pricing schemes for identical, restricted, related, and unrelated machine settings. Our main result is a dynamic pricing scheme for related machines that gives a constant competitive ratio, essentially matching the competitive ratio of online algorithms for this setting. In contrast, dynamic pricing gives poor performance for unrelated machines. This lower bound also exhibits a gap between what can be achieved by pricing versus what can be achieved by online algorithms

    Online Computation with Untrusted Advice

    Full text link
    The advice model of online computation captures a setting in which the algorithm is given some partial information concerning the request sequence. This paradigm allows to establish tradeoffs between the amount of this additional information and the performance of the online algorithm. However, if the advice is corrupt or, worse, if it comes from a malicious source, the algorithm may perform poorly. In this work, we study online computation in a setting in which the advice is provided by an untrusted source. Our objective is to quantify the impact of untrusted advice so as to design and analyze online algorithms that are robust and perform well even when the advice is generated in a malicious, adversarial manner. To this end, we focus on well-studied online problems such as ski rental, online bidding, bin packing, and list update. For ski-rental and online bidding, we show how to obtain algorithms that are Pareto-optimal with respect to the competitive ratios achieved; this improves upon the framework of Purohit et al. [NeurIPS 2018] in which Pareto-optimality is not necessarily guaranteed. For bin packing and list update, we give online algorithms with worst-case tradeoffs in their competitiveness, depending on whether the advice is trusted or not; this is motivated by work of Lykouris and Vassilvitskii [ICML 2018] on the paging problem, but in which the competitiveness depends on the reliability of the advice. Furthermore, we demonstrate how to prove lower bounds, within this model, on the tradeoff between the number of advice bits and the competitiveness of any online algorithm. Last, we study the effect of randomization: here we show that for ski-rental there is a randomized algorithm that Pareto-dominates any deterministic algorithm with advice of any size. We also show that a single random bit is not always inferior to a single advice bit, as it happens in the standard model
    • …
    corecore