4,484 research outputs found

    Competitive Packet Routing with Priority Lists

    Get PDF
    In competitive packet routing games, packets are routed selfishly through a network and scheduling policies at edges determine which packages are forwarded first if there is not enough capacity on an edge to forward all packages at once. We analyze the impact of priority lists on the worst-case quality of pure Nash equilibria. A priority list is an ordered list of players that may or may not depend on the edge. Whenever the number of packets entering an edge exceeds the inflow capacity, packets are processed in list order. We derive several new bounds on the price of anarchy and stability for global and local priority policies. We also consider the question of the complexity of computing an optimal priority list. It turns out that even for very restricted cases, i.e., for routing on a tree, the computation of an optimal priority list is APX-hard

    Oligopolistic Competitive Packet Routing

    Get PDF
    Oligopolistic competitive packet routing games model situations in which traffic is routed in discrete units through a network over time. We study a game-theoretic variant of packet routing, where in contrast to classical packet routing, we are lacking a central authority to decide on an oblivious routing protocol. Instead, selfish acting decision makers ("players") control a certain amount of traffic each, which needs to be sent as fast as possible from a player-specific origin to a player-specific destination through a commonly used network. The network is represented by a directed graph, each edge of which being endowed with a transit time, as well as a capacity bounding the number of traffic units entering an edge simultaneously. Additionally, a priority policy on the set of players is publicly known with respect to which conflicts at intersections are resolved. We prove the existence of a pure Nash equilibrium and show that it can be constructed by sequentially computing an integral earliest arrival flow for each player. Moreover, we derive several tight bounds on the price of anarchy and the price of stability in single source games

    Routing Games over Time with FIFO policy

    Full text link
    We study atomic routing games where every agent travels both along its decided edges and through time. The agents arriving on an edge are first lined up in a \emph{first-in-first-out} queue and may wait: an edge is associated with a capacity, which defines how many agents-per-time-step can pop from the queue's head and enter the edge, to transit for a fixed delay. We show that the best-response optimization problem is not approximable, and that deciding the existence of a Nash equilibrium is complete for the second level of the polynomial hierarchy. Then, we drop the rationality assumption, introduce a behavioral concept based on GPS navigation, and study its worst-case efficiency ratio to coordination.Comment: Submission to WINE-2017 Deadline was August 2nd AoE, 201

    An efficient scalable scheduling mac protocol for underwater sensor networks

    Get PDF
    Underwater Sensor Networks (UWSNs) utilise acoustic waves with comparatively lower loss and longer range than those of electromagnetic waves. However, energy remains a challenging issue in addition to long latency, high bit error rate, and limited bandwidth. Thus, collision and retransmission should be efficiently handled at Medium Access Control (MAC) layer in order to reduce the energy cost and also to improve the throughput and fairness across the network. In this paper, we propose a new reservation-based distributed MAC protocol called ED-MAC, which employs a duty cycle mechanism to address the spatial-temporal uncertainty and the hidden node problem to effectively avoid collisions and retransmissions. ED-MAC is a conflict-free protocol, where each sensor schedules itself independently using local information. Hence, ED-MAC can guarantee conflict-free transmissions and receptions of data packets. Compared with other conflict-free MAC protocols, ED-MAC is distributed and more reliable, i.e., it schedules according to the priority of sensor nodes which based on their depth in the network. We then evaluate design choices and protocol performance through extensive simulation to study the load effects and network scalability in each protocol. The results show that ED-MAC outperforms the contention-based MAC protocols and achieves a significant improvement in terms of successful delivery ratio, throughput, energy consumption, and fairness under varying offered traffic and number of nodes

    Using a Multiobjective Approach to Balance Mission and Network Goals within a Delay Tolerant Network Topology

    Get PDF
    This thesis investigates how to incorporate aspects of an Air Tasking Order (ATO), a Communications Tasking Order (CTO), and a Network Tasking Order (NTO) within a cognitive network framework. This was done in an effort to aid the commander and or network operator by providing automation for battlespace management to improve response time and potential inconsistent problem resolution. In particular, autonomous weapon systems such as unmanned aerial vehicles (UAVs) were the focus of this research This work implemented a simple cognitive process by incorporating aspects of behavior based robotic control principles to solve the multi-objective optimization problem of balancing both network and mission goals. The cognitive process consisted of both a multi-move look ahead component, in which the future outcomes of decisions were estimated, and a subsumption decision making architecture in which these decision-outcome pairs were selected so they co-optimized the dual goals. This was tested within a novel Air force mission scenario consisting of a UAV surveillance mission within a delay tolerant network (DTN) topology. This scenario used a team of small scale UAVs (operating as a team but each running the cognitive process independently) to balance the mission goal of maintaining maximum overall UAV time-on-target and the network goal of minimizing the packet end-to-end delays experienced within the DTN. The testing was accomplished within a MATLAB discrete event simulation. The results indicated that this proposed approach could successfully simultaneously improve both goals as the network goal improved 52% and the mission goal improved by approximately 6%

    Interconnection Networks for Scalable Quantum Computers

    Full text link
    We show that the problem of communication in a quantum computer reduces to constructing reliable quantum channels by distributing high-fidelity EPR pairs. We develop analytical models of the latency, bandwidth, error rate and resource utilization of such channels, and show that 100s of qubits must be distributed to accommodate a single data communication. Next, we show that a grid of teleportation nodes forms a good substrate on which to distribute EPR pairs. We also explore the control requirements for such a network. Finally, we propose a specific routing architecture and simulate the communication patterns of the Quantum Fourier Transform to demonstrate the impact of resource contention.Comment: To appear in International Symposium on Computer Architecture 2006 (ISCA 2006

    Non-minimal adaptive routing for efficient interconnection networks

    Get PDF
    RESUMEN: La red de interconexión es un concepto clave de los sistemas de computación paralelos. El primer aspecto que define una red de interconexión es su topología. Habitualmente, las redes escalables y eficientes en términos de coste y consumo energético tienen bajo diámetro y se basan en topologías que encaran el límite de Moore y en las que no hay diversidad de caminos mínimos. Una vez definida la topología, quedando implícitamente definidos los límites de rendimiento de la red, es necesario diseñar un algoritmo de enrutamiento que se acerque lo máximo posible a esos límites y debido a la ausencia de caminos mínimos, este además debe explotar los caminos no mínimos cuando el tráfico es adverso. Estos algoritmos de enrutamiento habitualmente seleccionan entre rutas mínimas y no mínimas en base a las condiciones de la red. Las rutas no mínimas habitualmente se basan en el algoritmo de balanceo de carga propuesto por Valiant, esto implica que doblan la longitud de las rutas mínimas y por lo tanto, la latencia soportada por los paquetes se incrementa. En cuanto a la tecnología, desde su introducción en entornos HPC a principios de los años 2000, Ethernet ha sido usado en un porcentaje representativo de los sistemas. Esta tesis introduce una implementación realista y competitiva de una red escalable y sin pérdidas basada en dispositivos de red Ethernet commodity, considerando topologías de bajo diámetro y bajo consumo energético y logrando un ahorro energético de hasta un 54%. Además, propone un enrutamiento sobre la citada arquitectura, en adelante QCN-Switch, el cual selecciona entre rutas mínimas y no mínimas basado en notificaciones de congestión explícitas. Una vez implementada la decisión de enrutar siguiendo rutas no mínimas, se introduce un enrutamiento adaptativo en fuente capaz de adaptar el número de saltos en las rutas no mínimas. Este enrutamiento, en adelante ACOR, es agnóstico de la topología y mejora la latencia en hasta un 28%. Finalmente, se introduce un enrutamiento dependiente de la topología, en adelante LIAN, que optimiza el número de saltos de las rutas no mínimas basado en las condiciones de la red. Los resultados de su evaluación muestran que obtiene una latencia cuasi óptima y mejora el rendimiento de algoritmos de enrutamiento actuales reduciendo la latencia en hasta un 30% y obteniendo un rendimiento estable y equitativo.ABSTRACT: Interconnection network is a key concept of any parallel computing system. The first aspect to define an interconnection network is its topology. Typically, power and cost-efficient scalable networks with low diameter rely on topologies that approach the Moore bound in which there is no minimal path diversity. Once the topology is defined, the performance bounds of the network are determined consequently, so a suitable routing algorithm should be designed to accomplish as much as possible of those limits and, due to the lack of minimal path diversity, it must exploit non-minimal paths when the traffic pattern is adversarial. These routing algorithms usually select between minimal and non-minimal paths based on the network conditions, where the non-minimal paths are built according to Valiant load-balancing algorithm. This implies that these paths double the length of minimal ones and then the latency supported by packets increases. Regarding the technology, from its introduction in HPC systems in the early 2000s, Ethernet has been used in a significant fraction of the systems. This dissertation introduces a realistic and competitive implementation of a scalable lossless Ethernet network for HPC environments considering low-diameter and low-power topologies. This allows for up to 54% power savings. Furthermore, it proposes a routing upon the cited architecture, hereon QCN-Switch, which selects between minimal and non-minimal paths per packet based on explicit congestion notifications instead of credits. Once the miss-routing decision is implemented, it introduces two mechanisms regarding the selection of the intermediate switch to develop a source adaptive routing algorithm capable of adapting the number of hops in the non-minimal paths. This routing, hereon ACOR, is topology-agnostic and improves average latency in all cases up to 28%. Finally, a topology-dependent routing, hereon LIAN, is introduced to optimize the number of hops in the non-minimal paths based on the network live conditions. Evaluations show that LIAN obtains almost-optimal latency and outperforms state-of-the-art adaptive routing algorithms, reducing latency by up to 30.0% and providing stable throughput and fairness.This work has been supported by the Spanish Ministry of Education, Culture and Sports under grant FPU14/02253, the Spanish Ministry of Economy, Industry and Competitiveness under contracts TIN2010-21291-C02-02, TIN2013-46957-C2-2-P, and TIN2013-46957-C2-2-P (AEI/FEDER, UE), the Spanish Research Agency under contract PID2019-105660RBC22/AEI/10.13039/501100011033, the European Union under agreements FP7-ICT-2011- 7-288777 (Mont-Blanc 1) and FP7-ICT-2013-10-610402 (Mont-Blanc 2), the University of Cantabria under project PAR.30.P072.64004, and by the European HiPEAC Network of Excellence through an internship grant supported by the European Union’s Horizon 2020 research and innovation program under grant agreement No. H2020-ICT-2015-687689
    corecore