571 research outputs found

    Cell degradation detection based on an inter-cell approach

    Get PDF
    Fault management is a crucial part of cellular network management systems. The status of the base stations is usually monitored by well-defined key performance indicators (KPIs). The approaches for cell degradation detection are based on either intra-cell or inter-cell analysis of the KPIs. In intra-cell analysis, KPI profiles are built based on their local history data whereas in inter-cell analysis, KPIs of one cell are compared with the corresponding KPIs of the other cells. In this work, we argue in favor of the inter-cell approach and apply a degradation detection method that is able to detect a sleeping cell that could be difficult to observe using traditional intra-cell methods. We demonstrate its use for detecting emulated degradations among performance data recorded from a live LTE network. The method can be integrated in current systems because it can operate using existing KPIs without any major modification to the network infrastructure

    Data Analytics and Knowledge Discovery for Root Cause Analysis in LTE Self-Organizing Networks.

    Get PDF
    En las últimas décadas, las redes móviles han cobrado cada vez más importancia en el mundo de las telecomunicaciones. Lo que empezó con el objetivo de dar un servicio de voz a nivel global, ha tomado recientemente la direcci\'on de convertirse en un servicio casi exclusivo de datos en banda ancha, dando lugar a la red LTE. Como consecuencia de la continua aparición de nuevos servicios, los usuarios demandan cada vez redes con mayor capacidad, mejor calidad de servicio y a precios menores. Esto provoca una dura competición entre los operadores, que necesitan reducir costes y cortes en el servicio causados por trabajos de mejora o problemas. Para este fin, las redes autoorganizadas SON (Self-Organizing Network) proporcionan herramientas para la automatización de las tareas de operación y mantenimiento, haciéndolas más rápidas y mantenibles por pequeños equipos de expertos. Las funcionalidades SON se dividen en tres grupos principales: autoconfiguración (Self-configuration, los elementos nuevos se configuran de forma automática), autooptimización (Self-optimization, los parámetros de la red se actualizan de forma automática para dar el mejor servicio posible) y autocuración (Self-healing, la red se recupera automáticamente de problemas). En el ambiente competitivo de las redes móviles, los cortes de servicio provocados por problemas en la red causan un gran coste de oportunidad, dado que afectan a la experiencia de usuario. Self-healing es la función SON que se encarga de la automatización de la resolución de problemas. El objetivo principal de Self-healing es reducir el tiempo que dura la resolución de un problema y liberar a los expertos de tareas repetitivas. Self-healing tiene cuatro procesos principales: detección (identificar que los usuarios tienen problemas en una celda), compensación (redirigir los recursos de la red para cubrir a los usuarios afectados), diagnosis (encontrar la causa de dichos problemas) y recuperación (realizar las acciones necesarias para devolver los elementos afectados a su operación normal). De todas las funcionalidades SON, Self-healing (especialmente la función de diagnosis) es la que constituye el mayor desafío, dada su complejidad, y por tanto, es la que menos se ha desarrollado. No hay sistemas comerciales que hagan una diagnosis automática con la suficiente fiabilidad para convencer a los operadores de red. Esta falta de desarrollo se debe a la ausencia de información necesaria para el diseño de sistemas de diagnosis automática. No hay bases de datos que recojan datos de rendimiento de la red en casos problemáticos y los etiqueten con la causa del problema que puedan ser estudiados para encontrar los mejores algoritmos de tratamiento de datos. A pesar de esto, se han propuesto soluciones basadas en la Inteligencia Artificial (IA) para la diagnosis, tomando como punto de partida la limitada información disponible. Estos algoritmos a su vez necesitan ser entrenados con datos realistas. Nuevamente, dado que no hay bases de datos de problemas reales, los datos de entrenamiento suelen ser extraídos de simulaciones, lo cual les quita realismo. La causa de la falta de datos es que los expertos en resolución de problemas no registran los casos conforme los van solucionando. En el ambiente competitivo en el que trabajan, su tiempo es un recurso limitado que debe ser utilizado para resolver problemas y no para registrarlos. En el caso en que tales bases de datos fueran recogidas, un aspecto importante a tener en cuenta es que el volumen, variabilidad y velocidad de generación de los datos hacen que éste sea considerado un problema Big Data. El problema principal de los sistemas de diagnosis automática es la falta de conocimiento experto. Para resolver esto, el conocimiento experto debe convertirse a un formato utilizable. Este proceso se conoce como adquisición del conocimiento. Hay dos aproximaciones a la adquisición del conocimiento: manual(a través de entrevistas o con la implicación de los expertos en el desarrollo) o a través de la analítica de datos (minería de datos en bases de datos que contienen el resultado del trabajo de los expertos). Esta tesis estudia la aproximación de la analítica de datos, utilizando las técnicas KDD (Knowledge Discovery and Datamining). Para que esta aproximación pueda ser utilizada, se requiere la existencia de una base de datos de casos reales de fallo, lo cual es un gran desafío. La visión general de esta tesis es una plataforma en la que cada vez que un experto diagnostica un problema en la red, éste puede reportarlo con un esfuerzo mínimo y almacenarlo en el sistema. La parte central de este sistema es un algoritmo de diagnosis (en esta tesis un controlador de lógica borrosa) que evoluciona y mejora aprendiendo de cada nuevo ejemplo, hasta llegar al punto en el que los expertos pueden confiar en su precisión para los problemas más comunes. Cada vez que surja un nuevo problema, se añadirá a la base de datos del sistema, incrementando así aún más su potencia. El fin es liberar a los expertos de tareas repetitivas, de modo que puedan dedicar su tiempo a desafíos cuya resolución sea más gratificante. Por tanto, el primer objetivo de esta tesis es la colección de una base de datos de casos reales de fallos. Para ello, se diseña una interfaz de usuario para la recolección de datos teniendo en cuenta como requisito prioritario la facilidad de uso. Una vez que se dispone de datos recogidos, se analizarán para comprender mejor sus propiedades y obtener la información necesaria para el diseño de los algoritmos de analítica de datos. Otro objetivo de esta tesis es la creación de un modelo de fallos de LTE, encontrando las relaciones entre el rendimiento de la red y la ocurrencia de los problemas. La adquisición del conocimiento se realiza mediante la aplicación de algoritmos de analítica sobre los datos recogidos. Se diseña un proceso KDD que extrae los parámetros de un controlador de lógica borrosa y se aplica sobre la base de datos recogida. Finalmente, esta tesis también tiene como objetivo realizar un análisis de los aspectos Big Data de las funciones Self-healing, y tenerlos en cuenta a la hora de diseñar los algoritmos

    Methods for Self-Healing based on traces and unsupervised learning in Self-Organizing Networks

    Get PDF
    With the advent of Long-Term Evolution (LTE) networks and the spread of a highly varied range of services, mobile operators are increasingly aware of the need to strengthen their maintenance and operational tasks in order to ensure a quality and positive user experience. Furthermore, the co- existence of multiple Radio Access Technologies (RAT), the increase in the traffic demand and the need to provide a great variety of services are steering the cellular network toward a new scenario where management tasks are becoming increasingly complex. As a result, mobile operators are focusing their efforts to deal with the maintenance of their networks without increasing either operational expenditures (OPEX) or capital expenditures (CAPEX). In this context, it is becoming necessary to effectively automate the management tasks through the concept of the Self-Organizing Networks (SON). In particular, SON functions cover three different areas: Self-Configuration, Self-Optimization and Self- Healing. Self-Configuration automates the deployment of new network elements and their parameter configuration. Self-Optimization is in charge of modifying the configuration of the parameters in order to enhance user experience. Finally, Self-Healing aims reduce the impact that failures and services degradation have on the end-user. To that end, Self-Healing (SH) systems monitor the network elements through several alarms, measurements and indicators in order to detect outage and degraded cells, then, diagnose the cause of their problem and, finally, execute the compensation or recovery actions. Even though mobile networks are become more prone to failures due to their huge increase in complexity, the automation of the troubleshooting tasks through the SH functionality has not been fully realized. Traditionally, both the research and the development of SON networks have been related to Self-Configuration and Self-Optimization. This has been mainly due to the challenges that need to be faced when SH systems are studied and implemented. This is especially relevant in the case of fault diagnosis. However, mobile operators are paying increasingly more attention to self-healing systems, which entails creating options to face those challenges that allow the development of SH functions. On the one hand, currently, the diagnosis continues to be manually done since it requires considerable hard-earned experience in order to be able to effectively identify the fault cause. In particular, troubleshooting experts thoroughly analyze the performance of the degraded network elements by means of measurements and indicators in order to identify the cause of the detected anomalies and symptoms. Therefore, automating the diagnosis tasks means knowing what specific performance indicators have to be analyzed and how to map the identified symptoms with the associate fault cause. This knowledge is acquired over time and it is characterized by being operator-specific based on their policies and network features. Furthermore, troubleshooting experts typically solve the failures in a network without either documenting the troubleshooting process or recording the analyzed indicators along with the label of the identified fault cause. In addition, because there is no specific regulation on documentation, the few documented faults are neither properly defined nor described in a standard way (e.g. the same fault cause may be appointed with different labels), making it even more difficult to automate the extraction of the expert knowledge. As a result, this a lack of documentation and lack of historical reported faults makes automation of diagnosis process more challenging. On the other hand, when the exact root cause cannot be remotely identified through the statistical information gathered at cell level, drive test are scheduled for further information. These drive tests aim to monitor mobile network performance by using vehicles to personally measure the radio interface quality along a predefined route. In particular, the troubleshooting experts use specialized test equipment in order to manually collect user-level measurements. Consequently, drive test entail a hefty expense for mobile operators, since it involves considerable investment in time and costly resources (such as personal, vehicles and complex test equipment). In this context, the Third Generation Partnership Project (3GPP) has standardized the automatic collection of field measurements (e.g. signaling messages, radio measurements and location information) through the mobile traces features and its extended functionality, the Minimization of Drive Tests (MDT). In particular, those features allow to automatically monitor the network performance in detail, reaching areas that cannot be covered by drive testing (e.g. indoor or private zones). Thus, mobile traces are regarded as an important enabler for SON since they avoid operators to rely on those expensive drive tests while, at the same time, provide greater details than the traditional cell-level indicators. As a result, enhancing the SH functionalities through the mobile traces increases the potential cost savings and the granularity of the analysis. Hence, in this thesis, several solutions are proposed to overcome the limitations that prevent the development of SH with special emphasis on the diagnosis phase. To that end, the lack of historical labeled databases has been addressed in two main ways. First, unsupervised techniques have been used to automatically design diagnosis system from real data without requiring either documentation or historical reports about fault cases. Second, a group of significant faults have been modeled and implemented in a dynamic system level simulator in order to generate an artificial labeled database, which is extremely important in evaluating and comparing the proposed solutions with the state-of- the-art algorithm. Then, the diagnosis of those faults that cannot be identified through the statistical performance indicators gathered at cell level is automated by the analysis of the mobile traces avoiding the costly drive test. In particular, in this thesis, the mobile traces have been used to automatically identify the cause of each unexpected user disconnection, to geo-localize RF problems that affect the cell performance and to identify the impact of a fault depending on the availability of legacy systems (e.g. Third Generation, 3G). Finally, the proposed techniques have been validated using real and simulated LTE data by analyzing its performance and comparing it with reference mechanisms

    Automated network optimisation using data mining as support for economic decision systems

    Get PDF
    The evolution from wired voice communications to wireless and cloud computing services has led to the rapid growth of wireless communication companies attempting to meet consumer needs. While these companies have generally been able to achieve quality of service (QoS) high enough to meet most consumer demands, the recent growth in data hungry services in addition to wireless voice communication, has placed significant stress on the infrastructure and begun to translate into increased QoS issues. As a result, wireless providers are finding difficulty to meet demand and dealing with an overwhelming volume of mobile data. Many telecommunication service providers have turned to data analytics techniques to discover hidden insights for fraud detection, customer churn detection and credit risk analysis. However, most are illequipped to prioritise expansion decisions and optimise network faults and costs to ensure customer satisfaction and optimal profitability. The contribution of this thesis in the decision-making process is significant as it initially proposes a network optimisation scheme using data mining algorithms to develop a monitoring framework capable of troubleshooting network faults while optimising costs based on financial evaluations. All the data mining experiments contribute to the development of a super–framework that has been tested using real-data to demonstrate that data mining techniques play a crucial role in the prediction of network optimisation actions. Finally, the insights extracted from the super-framework demonstrate that machine learning mechanisms can draw out promising solutions for network optimisation decisions, customer segmentation, customers churn prediction and also in revenue management. The outputs of the thesis seek to help wireless providers to determine the QoS factors that should be addressed for an efficient network optimisation plan and also presents the academic contribution of this research

    A New Paradigm for Proactive Self-Healing in Future Self-Organizing Mobile Cellular Networks

    Get PDF
    Mobile cellular network operators spend nearly a quarter of their revenue on network management and maintenance. Remarkably, a significant proportion of that budget is spent on resolving outages that degrade or disrupt cellular services. Historically, operators have mainly relied on human expertise to identify, diagnose and resolve such outages while also compensating for them in the short-term. However, with ambitious quality of experience expectations from 5th generation and beyond mobile cellular networks spurring research towards technologies such as ultra-dense heterogeneous networks and millimeter wave spectrum utilization, discovering and compensating coverage lapses in future networks will be a major challenge. Numerous studies have explored heuristic, analytical and machine learning-based solutions to autonomously detect, diagnose and compensate cell outages in legacy mobile cellular networks, a branch of research known as self-healing. This dissertation focuses on self-healing techniques for future mobile cellular networks, with special focus on outage detection and avoidance components of self-healing. Network outages can be classified into two primary types: 1) full and 2) partial. Full outages result from failed soft or hard components of network entities while partial outages are generally a consequence of parametric misconfiguration. To this end, chapter 2 of this dissertation is dedicated to a detailed survey of research on detecting, diagnosing and compensating full outages as well as a detailed analysis of studies on proactive outage avoidance schemes and their challenges. A key observation from the analysis of the state-of-the-art outage detection techniques is their dependence on full network coverage data, susceptibility to noise or randomness in the data and inability to characterize outages in both spacial domain and temporal domain. To overcome these limitations, chapters 3 and 4 present two unique and novel outage detection techniques. Chapter 3 presents an outage detection technique based on entropy field decomposition which combines information field theory and entropy spectrum pathways theory and is robust to noise variance. Chapter 4 presents a deep learning neural network algorithm which is robust to data sparsity and compares it with entropy field decomposition and other state-of-the-art machine learning-based outage detection algorithms including support vector machines, K-means clustering, independent component analysis and deep auto-encoders. Based on the insights obtained regarding the impact of partial outages, chapter 5 presents a complete framework for 5th generation and beyond mobile cellular networks that is designed to avoid partial outages caused by parametric misconfiguration. The power of the proposed framework is demonstrated by leveraging it to design a solution that tackles one of the most common problems associated with ultra-dense heterogeneous networks, namely imbalanced load among small and macro cells, and poor resource utilization as a consequence. The optimization problem is formulated as a function of two hard parameters namely antenna tilt and transmit power, and a soft parameter, cell individual offset, that affect the coverage, capacity and load directly. The resulting solution is a combination of the otherwise conflicting coverage and capacity optimization and load balancing self-organizing network functions

    Modelling of reliable service based operations support system (MORSBOSS)

    Get PDF
    Philosophiae Doctor - PhDThe underlying theme of this thesis is identification, classification, detection and prediction of cellular network faults using state of the art technologies, methods and algorithms
    corecore